Question 2 of [tex][tex]$25$[/tex][/tex]

Solve [tex][tex]$8x + c = k$[/tex][/tex] for [tex][tex]$x$[/tex][/tex].

A. [tex][tex]$x = \frac{k - c}{8}$[/tex][/tex]

B. [tex][tex]$x = 8(k + c)$[/tex][/tex]

C. [tex][tex]$x = \frac{k + c}{8}$[/tex][/tex]

D. [tex][tex]$x = 8(k - c)$[/tex][/tex]



Answer :

To solve the equation [tex]\( 8x + c = k \)[/tex] for [tex]\( x \)[/tex], we need to isolate [tex]\( x \)[/tex]. Let's go through the steps together:

1. Start with the given equation:

[tex]\[ 8x + c = k \][/tex]

2. Isolate the term containing [tex]\( x \)[/tex] by subtracting [tex]\( c \)[/tex] from both sides:

[tex]\[ 8x + c - c = k - c \][/tex]

This simplifies to:

[tex]\[ 8x = k - c \][/tex]

3. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by 8:

[tex]\[ \frac{8x}{8} = \frac{k - c}{8} \][/tex]

This simplifies to:

[tex]\[ x = \frac{k - c}{8} \][/tex]

So, the solution to the equation [tex]\( 8x + c = k \)[/tex] for [tex]\( x \)[/tex] is:

[tex]\[ x = \frac{k - c}{8} \][/tex]

Therefore, the correct option is:

A. [tex]\( x = \frac{k - c}{8} \)[/tex]