Answer :
To find the quotient of the given rational expressions, let's follow these steps:
1. Understand the given problem:
We need to find the quotient of two rational expressions:
[tex]\[ \frac{x^2-16}{x+5} \div \frac{x^2-8x+16}{2x+10} \][/tex]
2. Rewrite the division as multiplication by the reciprocal:
[tex]\[ \frac{x^2-16}{x+5} \div \frac{x^2-8x+16}{2x+10} = \frac{x^2-16}{x+5} \times \frac{2x+10}{x^2-8x+16} \][/tex]
3. Factorize the numerators and denominators:
- [tex]\(x^2 - 16\)[/tex] is a difference of squares:
[tex]\[ x^2 - 16 = (x-4)(x+4) \][/tex]
- [tex]\(x^2 - 8x + 16\)[/tex] is a perfect square trinomial:
[tex]\[ x^2 - 8x + 16 = (x-4)^2 \][/tex]
- [tex]\(2x + 10\)[/tex] can be factored out:
[tex]\[ 2x + 10 = 2(x + 5) \][/tex]
4. Substitute the factored forms into the expressions:
[tex]\[ \frac{(x-4)(x+4)}{x+5} \times \frac{2(x+5)}{(x-4)^2} \][/tex]
5. Simplify by canceling common factors:
Notice that [tex]\((x+5)\)[/tex] and [tex]\((x-4)\)[/tex] appear in both the numerator and the denominator, so they can be canceled out:
[tex]\[ \frac{(x-4)(x+4)}{\cancel{x+5}} \times \frac{2\cancel{(x+5)}}{(x-4)^2} = \frac{(x-4)(x+4)}{1} \times \frac{2}{(x-4)^2} \][/tex]
Simplify further:
[tex]\[ \frac{(x+4)}{1} \times \frac{2}{x-4} = \frac{2(x+4)}{x-4} \][/tex]
Therefore, the quotient of the given rational expressions in reduced form is:
[tex]\[ \boxed{\frac{2(x+4)}{x-4}} \][/tex]
The correct answer is [tex]\(\boxed{A}\)[/tex].
1. Understand the given problem:
We need to find the quotient of two rational expressions:
[tex]\[ \frac{x^2-16}{x+5} \div \frac{x^2-8x+16}{2x+10} \][/tex]
2. Rewrite the division as multiplication by the reciprocal:
[tex]\[ \frac{x^2-16}{x+5} \div \frac{x^2-8x+16}{2x+10} = \frac{x^2-16}{x+5} \times \frac{2x+10}{x^2-8x+16} \][/tex]
3. Factorize the numerators and denominators:
- [tex]\(x^2 - 16\)[/tex] is a difference of squares:
[tex]\[ x^2 - 16 = (x-4)(x+4) \][/tex]
- [tex]\(x^2 - 8x + 16\)[/tex] is a perfect square trinomial:
[tex]\[ x^2 - 8x + 16 = (x-4)^2 \][/tex]
- [tex]\(2x + 10\)[/tex] can be factored out:
[tex]\[ 2x + 10 = 2(x + 5) \][/tex]
4. Substitute the factored forms into the expressions:
[tex]\[ \frac{(x-4)(x+4)}{x+5} \times \frac{2(x+5)}{(x-4)^2} \][/tex]
5. Simplify by canceling common factors:
Notice that [tex]\((x+5)\)[/tex] and [tex]\((x-4)\)[/tex] appear in both the numerator and the denominator, so they can be canceled out:
[tex]\[ \frac{(x-4)(x+4)}{\cancel{x+5}} \times \frac{2\cancel{(x+5)}}{(x-4)^2} = \frac{(x-4)(x+4)}{1} \times \frac{2}{(x-4)^2} \][/tex]
Simplify further:
[tex]\[ \frac{(x+4)}{1} \times \frac{2}{x-4} = \frac{2(x+4)}{x-4} \][/tex]
Therefore, the quotient of the given rational expressions in reduced form is:
[tex]\[ \boxed{\frac{2(x+4)}{x-4}} \][/tex]
The correct answer is [tex]\(\boxed{A}\)[/tex].