A dilation has center [tex][tex]$(0,0)$[/tex][/tex]. Find the image of each point for the given scale factor. [tex][tex]$P(-3,5) ; D_1(P)$[/tex][/tex]

A. [tex][tex]$(5,-3)$[/tex][/tex]
B. [tex][tex]$(6,-2)$[/tex][/tex]
C. [tex][tex]$(-3,5)$[/tex][/tex]



Answer :

To find the image of a point under a dilation centered at [tex]\((0,0)\)[/tex], you multiply each coordinate of the point by the scale factor [tex]\(D\)[/tex]. Given that the point [tex]\(P(-3, 5)\)[/tex] and the scale factor [tex]\(D_1\)[/tex] are provided:

1. Identify the coordinates of point [tex]\(P\)[/tex]: [tex]\((-3, 5)\)[/tex].
2. Determine the scale factor [tex]\(D_1\)[/tex]. In this case, [tex]\(D_1\)[/tex] appears to result in the original point itself, signifying an identity transformation, which has a scale factor of 1.
3. Apply the dilation transformation by multiplying each coordinate of [tex]\(P\)[/tex] by the scale factor:
[tex]\[ x' = D_1 \cdot x = 1 \cdot (-3) = -3 \][/tex]
[tex]\[ y' = D_1 \cdot y = 1 \cdot 5 = 5 \][/tex]

So, the image of the point [tex]\((-3, 5)\)[/tex] after dilation by the scale factor [tex]\(D_1\)[/tex] is [tex]\((-3, 5)\)[/tex].

Amongst the given options:
A. [tex]\((5, -3)\)[/tex]
B. [tex]\((6, -2)\)[/tex]
C. [tex]\((-3, 5)\)[/tex]

The correct answer is:
C. [tex]\((-3, 5)\)[/tex]