Write and evaluate the expression. Then, select the correct answer.

The sum of forty-five and a number; evaluate when [tex][tex]$n=1.1$[/tex][/tex].

A. [tex][tex]$45 n$[/tex][/tex]; when [tex][tex]$n=1.1$[/tex][/tex], the value is 49.5.
B. [tex][tex]$45+n$[/tex][/tex]; when [tex][tex]$n=1.1$[/tex][/tex], the value is 46.1.
C. [tex][tex]$45-n$[/tex][/tex]; when [tex][tex]$n=1.1$[/tex][/tex], the value is 43.9.
D. [tex][tex]$\frac{n}{45}$[/tex][/tex]; when [tex][tex]$n=1.1$[/tex][/tex], the value is 0.024.



Answer :

Sure, let's break down and verify the given expressions with the number [tex]\( n = 1.1 \)[/tex] step-by-step.

1. Evaluate the expression [tex]\( 45 n \)[/tex] when [tex]\( n = 1.1 \)[/tex]:
[tex]\[ 45 \times 1.1 = 49.50000000000001 \][/tex]
Thus, the value of [tex]\( 45 n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is approximately 49.5.

2. Evaluate the expression [tex]\( 45 + n \)[/tex] when [tex]\( n = 1.1 \)[/tex]:
[tex]\[ 45 + 1.1 = 46.1 \][/tex]
So, the value of [tex]\( 45 + n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is 46.1.

3. Evaluate the expression [tex]\( 45 - n \)[/tex] when [tex]\( n = 1.1 \)[/tex]:
[tex]\[ 45 - 1.1 = 43.9 \][/tex]
Therefore, the value of [tex]\( 45 - n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is 43.9.

4. Evaluate the expression [tex]\( \frac{n}{45} \)[/tex] when [tex]\( n = 1.1 \)[/tex]:
[tex]\[ \frac{1.1}{45} = 0.024444444444444446 \][/tex]
So, the value of [tex]\( \frac{n}{45} \)[/tex] when [tex]\( n = 1.1 \)[/tex] is approximately 0.024.

To summarize, the evaluated values are:
- [tex]\( 45 n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is approximately 49.5
- [tex]\( 45 + n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is 46.1
- [tex]\( 45 - n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is 43.9
- [tex]\( \frac{n}{45} \)[/tex] when [tex]\( n = 1.1 \)[/tex] is approximately 0.024

These outcomes fit the problem's constraints and given results.