Answer :
Sure, let's break down and verify the given expressions with the number [tex]\( n = 1.1 \)[/tex] step-by-step.
1. Evaluate the expression [tex]\( 45 n \)[/tex] when [tex]\( n = 1.1 \)[/tex]:
[tex]\[ 45 \times 1.1 = 49.50000000000001 \][/tex]
Thus, the value of [tex]\( 45 n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is approximately 49.5.
2. Evaluate the expression [tex]\( 45 + n \)[/tex] when [tex]\( n = 1.1 \)[/tex]:
[tex]\[ 45 + 1.1 = 46.1 \][/tex]
So, the value of [tex]\( 45 + n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is 46.1.
3. Evaluate the expression [tex]\( 45 - n \)[/tex] when [tex]\( n = 1.1 \)[/tex]:
[tex]\[ 45 - 1.1 = 43.9 \][/tex]
Therefore, the value of [tex]\( 45 - n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is 43.9.
4. Evaluate the expression [tex]\( \frac{n}{45} \)[/tex] when [tex]\( n = 1.1 \)[/tex]:
[tex]\[ \frac{1.1}{45} = 0.024444444444444446 \][/tex]
So, the value of [tex]\( \frac{n}{45} \)[/tex] when [tex]\( n = 1.1 \)[/tex] is approximately 0.024.
To summarize, the evaluated values are:
- [tex]\( 45 n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is approximately 49.5
- [tex]\( 45 + n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is 46.1
- [tex]\( 45 - n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is 43.9
- [tex]\( \frac{n}{45} \)[/tex] when [tex]\( n = 1.1 \)[/tex] is approximately 0.024
These outcomes fit the problem's constraints and given results.
1. Evaluate the expression [tex]\( 45 n \)[/tex] when [tex]\( n = 1.1 \)[/tex]:
[tex]\[ 45 \times 1.1 = 49.50000000000001 \][/tex]
Thus, the value of [tex]\( 45 n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is approximately 49.5.
2. Evaluate the expression [tex]\( 45 + n \)[/tex] when [tex]\( n = 1.1 \)[/tex]:
[tex]\[ 45 + 1.1 = 46.1 \][/tex]
So, the value of [tex]\( 45 + n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is 46.1.
3. Evaluate the expression [tex]\( 45 - n \)[/tex] when [tex]\( n = 1.1 \)[/tex]:
[tex]\[ 45 - 1.1 = 43.9 \][/tex]
Therefore, the value of [tex]\( 45 - n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is 43.9.
4. Evaluate the expression [tex]\( \frac{n}{45} \)[/tex] when [tex]\( n = 1.1 \)[/tex]:
[tex]\[ \frac{1.1}{45} = 0.024444444444444446 \][/tex]
So, the value of [tex]\( \frac{n}{45} \)[/tex] when [tex]\( n = 1.1 \)[/tex] is approximately 0.024.
To summarize, the evaluated values are:
- [tex]\( 45 n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is approximately 49.5
- [tex]\( 45 + n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is 46.1
- [tex]\( 45 - n \)[/tex] when [tex]\( n = 1.1 \)[/tex] is 43.9
- [tex]\( \frac{n}{45} \)[/tex] when [tex]\( n = 1.1 \)[/tex] is approximately 0.024
These outcomes fit the problem's constraints and given results.