\begin{tabular}{ll|l|l|l|l|l|}
\hline[tex][tex]$(-2,3)$[/tex][/tex] & & & & \\
\hline
\end{tabular}

Find the distance between the two points.

Enter the number that goes beneath the radical symbol.



Answer :

To determine the distance between the two points, we use the distance formula, which is given by:

[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

where [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of the two points. For our specific case, the points are [tex]\((-2, 3)\)[/tex] and [tex]\((0, 0)\)[/tex].

Step-by-step solution:

1. Identify the coordinates:
[tex]\[ (x_1, y_1) = (-2, 3) \][/tex]
[tex]\[ (x_2, y_2) = (0, 0) \][/tex]

2. Calculate the differences between corresponding coordinates:
[tex]\[ x_2 - x_1 = 0 - (-2) = 0 + 2 = 2 \][/tex]
[tex]\[ y_2 - y_1 = 0 - 3 = -3 \][/tex]

3. Square these differences:
[tex]\[ (x_2 - x_1)^2 = 2^2 = 4 \][/tex]
[tex]\[ (y_2 - y_1)^2 = (-3)^2 = 9 \][/tex]

4. Sum the squared differences:
[tex]\[ (x_2 - x_1)^2 + (y_2 - y_1)^2 = 4 + 9 = 13 \][/tex]

So, the number that goes beneath the radical symbol, representing the sum of the squared differences, is [tex]\( 13 \)[/tex].

Other Questions