Simplify the given exponential expression.

[tex]\[
\left(x^{-2}\right)^9
\][/tex]

[tex]\[
\left(x^{-2}\right)^9 = \square
\][/tex]

(Type exponential notation with positive exponents.)



Answer :

To simplify the given exponential expression [tex]\((x^{-2})^9\)[/tex], let's follow a step-by-step process:

1. Understand the expression:
[tex]\[ (x^{-2})^9 \][/tex]

2. Apply the power of a power property of exponents:
When you raise a power to another power, you multiply the exponents. The property is:
[tex]\[ (a^m)^n = a^{m \cdot n} \][/tex]

3. Apply this property to our expression:
[tex]\[ (x^{-2})^9 = x^{-2 \cdot 9} = x^{-18} \][/tex]

4. Convert the expression to use a positive exponent:
To express [tex]\(x^{-18}\)[/tex] with a positive exponent, you use the property:
[tex]\[ a^{-m} = \frac{1}{a^m} \][/tex]
Therefore:
[tex]\[ x^{-18} = \frac{1}{x^{18}} \][/tex]

So the simplified form of the given exponential expression [tex]\((x^{-2})^9\)[/tex] is:
[tex]\[ \boxed{x^{-18}} \][/tex]

And, converted to exponential notation with a positive exponent, it remains:
[tex]\[ \boxed{x^{-18}} \][/tex]