Answer :
To convert a temperature from Celsius to Fahrenheit, we use the following formula:
[tex]\[ F = C \times \frac{9}{5} + 32 \][/tex]
where:
- [tex]\( F \)[/tex] is the temperature in Fahrenheit
- [tex]\( C \)[/tex] is the temperature in Celsius
Given that the temperature in Celsius is [tex]\( 20^{\circ} C \)[/tex], we can substitute this value into the formula:
[tex]\[ F = 20 \times \frac{9}{5} + 32 \][/tex]
First, we perform the multiplication:
[tex]\[ 20 \times \frac{9}{5} = 20 \times 1.8 = 36 \][/tex]
Next, we add [tex]\( 32 \)[/tex] to the result:
[tex]\[ 36 + 32 = 68 \][/tex]
So, the equivalent temperature on the Fahrenheit scale is [tex]\( 68^{\circ} F \)[/tex].
Reviewing the answer options:
- [tex]\( 68^{\circ} F \)[/tex]
- [tex]\( 293^{\circ} F \)[/tex]
- [tex]\( 20^{\circ} F \)[/tex]
- [tex]\( 52^{\circ} F \)[/tex]
The correct option is [tex]\( 68^{\circ} F \)[/tex].
Thus, the equivalent temperature on the Fahrenheit scale is [tex]\( 68 \)[/tex], and the correct answer is:
[tex]\[ \boxed{68^{\circ} F} \][/tex]
[tex]\[ F = C \times \frac{9}{5} + 32 \][/tex]
where:
- [tex]\( F \)[/tex] is the temperature in Fahrenheit
- [tex]\( C \)[/tex] is the temperature in Celsius
Given that the temperature in Celsius is [tex]\( 20^{\circ} C \)[/tex], we can substitute this value into the formula:
[tex]\[ F = 20 \times \frac{9}{5} + 32 \][/tex]
First, we perform the multiplication:
[tex]\[ 20 \times \frac{9}{5} = 20 \times 1.8 = 36 \][/tex]
Next, we add [tex]\( 32 \)[/tex] to the result:
[tex]\[ 36 + 32 = 68 \][/tex]
So, the equivalent temperature on the Fahrenheit scale is [tex]\( 68^{\circ} F \)[/tex].
Reviewing the answer options:
- [tex]\( 68^{\circ} F \)[/tex]
- [tex]\( 293^{\circ} F \)[/tex]
- [tex]\( 20^{\circ} F \)[/tex]
- [tex]\( 52^{\circ} F \)[/tex]
The correct option is [tex]\( 68^{\circ} F \)[/tex].
Thus, the equivalent temperature on the Fahrenheit scale is [tex]\( 68 \)[/tex], and the correct answer is:
[tex]\[ \boxed{68^{\circ} F} \][/tex]