Answer :
Sure, let's solve each of the expressions step by step.
1. Expression 1: [tex]\((-24)(-6) - 4\)[/tex]
- First, we multiply [tex]\(-24\)[/tex] by [tex]\(-6\)[/tex]:
[tex]\[ (-24) \times (-6) = 144 \][/tex]
- Then, we subtract 4 from the result:
[tex]\[ 144 - 4 = 140 \][/tex]
So, the result of the first expression is [tex]\(140\)[/tex].
2. Expression 2: [tex]\((8 + 144)\)[/tex]
- We simply add 8 and 144:
[tex]\[ 8 + 144 = 152 \][/tex]
So, the result of the second expression is [tex]\(152\)[/tex].
3. Expression 3: [tex]\(\frac{4 \times (-48)}{-12 \times (-1)}\)[/tex]
- First, we calculate the numerator by multiplying [tex]\(4\)[/tex] and [tex]\(-48\)[/tex]:
[tex]\[ 4 \times (-48) = -192 \][/tex]
- Then, we calculate the denominator by multiplying [tex]\(-12\)[/tex] and [tex]\(-1\)[/tex]:
[tex]\[ -12 \times (-1) = 12 \][/tex]
- Finally, we divide the numerator by the denominator:
[tex]\[ \frac{-192}{12} = -16 \][/tex]
So, the result of the third expression is [tex]\(-16\)[/tex].
4. Expression 4: [tex]\(12:(-12):4\)[/tex]
- First, we divide 12 by [tex]\(-12\)[/tex]:
[tex]\[ 12 \div (-12) = -1 \][/tex]
- Then, we divide the result by 4:
[tex]\[ -1 \div 4 = -0.25 \][/tex]
So, the result of the fourth expression is [tex]\(-0.25\)[/tex].
To summarize, the results of the expressions are:
1. [tex]\( (-24)(-6) - 4 = 140 \)[/tex]
2. [tex]\( 8 + 144 = 152 \)[/tex]
3. [tex]\( \frac{4 \times (-48)}{-12 \times (-1)} = -16 \)[/tex]
4. [tex]\( 12 : (-12) : 4 = -0.25 \)[/tex]
Hence, the final result is [tex]\((140, 152, -16.0, -0.25)\)[/tex].
1. Expression 1: [tex]\((-24)(-6) - 4\)[/tex]
- First, we multiply [tex]\(-24\)[/tex] by [tex]\(-6\)[/tex]:
[tex]\[ (-24) \times (-6) = 144 \][/tex]
- Then, we subtract 4 from the result:
[tex]\[ 144 - 4 = 140 \][/tex]
So, the result of the first expression is [tex]\(140\)[/tex].
2. Expression 2: [tex]\((8 + 144)\)[/tex]
- We simply add 8 and 144:
[tex]\[ 8 + 144 = 152 \][/tex]
So, the result of the second expression is [tex]\(152\)[/tex].
3. Expression 3: [tex]\(\frac{4 \times (-48)}{-12 \times (-1)}\)[/tex]
- First, we calculate the numerator by multiplying [tex]\(4\)[/tex] and [tex]\(-48\)[/tex]:
[tex]\[ 4 \times (-48) = -192 \][/tex]
- Then, we calculate the denominator by multiplying [tex]\(-12\)[/tex] and [tex]\(-1\)[/tex]:
[tex]\[ -12 \times (-1) = 12 \][/tex]
- Finally, we divide the numerator by the denominator:
[tex]\[ \frac{-192}{12} = -16 \][/tex]
So, the result of the third expression is [tex]\(-16\)[/tex].
4. Expression 4: [tex]\(12:(-12):4\)[/tex]
- First, we divide 12 by [tex]\(-12\)[/tex]:
[tex]\[ 12 \div (-12) = -1 \][/tex]
- Then, we divide the result by 4:
[tex]\[ -1 \div 4 = -0.25 \][/tex]
So, the result of the fourth expression is [tex]\(-0.25\)[/tex].
To summarize, the results of the expressions are:
1. [tex]\( (-24)(-6) - 4 = 140 \)[/tex]
2. [tex]\( 8 + 144 = 152 \)[/tex]
3. [tex]\( \frac{4 \times (-48)}{-12 \times (-1)} = -16 \)[/tex]
4. [tex]\( 12 : (-12) : 4 = -0.25 \)[/tex]
Hence, the final result is [tex]\((140, 152, -16.0, -0.25)\)[/tex].