Let [tex]f(x) = 3x^2 + 6[/tex] and [tex]g(x) = -5x + 2[/tex]. Find the following:

[tex]\[
(f-g)(-3)
\][/tex]

[tex]\[
(f-g)(-3) = ?
\][/tex]



Answer :

To determine [tex]\((f - g)(-3)\)[/tex], we need to follow a detailed, step-by-step process.

First, let's define the functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:

[tex]\[ f(x) = 3x^2 + 6 \][/tex]
[tex]\[ g(x) = -5x + 2 \][/tex]

We need to find the value of [tex]\((f - g)(-3)\)[/tex]. This means we will evaluate both [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] at [tex]\(x = -3\)[/tex], and then find the difference between these values.

1. Evaluate [tex]\(f(-3)\)[/tex]:

Substitute [tex]\(x = -3\)[/tex] into the function [tex]\(f(x)\)[/tex]:

[tex]\[ f(-3) = 3(-3)^2 + 6 \][/tex]

Calculate [tex]\((-3)^2\)[/tex]:

[tex]\[ (-3)^2 = 9 \][/tex]

Now, multiply by 3:

[tex]\[ 3 \cdot 9 = 27 \][/tex]

Add 6:

[tex]\[ 27 + 6 = 33 \][/tex]

Therefore:

[tex]\[ f(-3) = 33 \][/tex]

2. Evaluate [tex]\(g(-3)\)[/tex]:

Substitute [tex]\(x = -3\)[/tex] into the function [tex]\(g(x)\)[/tex]:

[tex]\[ g(-3) = -5(-3) + 2 \][/tex]

Calculate [tex]\(-5 \cdot -3\)[/tex]:

[tex]\[ -5 \cdot -3 = 15 \][/tex]

Add 2:

[tex]\[ 15 + 2 = 17 \][/tex]

Therefore:

[tex]\[ g(-3) = 17 \][/tex]

3. Calculate [tex]\((f - g)(-3)\)[/tex]:

Subtract [tex]\(g(-3)\)[/tex] from [tex]\(f(-3)\)[/tex]:

[tex]\[ (f - g)(-3) = f(-3) - g(-3) \][/tex]

Substitute the values we found:

[tex]\[ (f - g)(-3) = 33 - 17 \][/tex]

Perform the subtraction:

[tex]\[ 33 - 17 = 16 \][/tex]

Thus:

[tex]\[ (f - g)(-3) = 16 \][/tex]