Complete the table for the function.

[tex]\[ f(x) = \sqrt{x-5} + 3 \][/tex]

\begin{tabular}{c|c}
[tex] x [/tex] & [tex] y [/tex] \\
\hline
5 & [tex] [?] [/tex] \\
6 & \\
9 & [tex] \square [/tex] \\
14 &
\end{tabular}



Answer :

To complete the table for the function [tex]\( f(x) = \sqrt{x-5} + 3 \)[/tex], we will evaluate the function at each of the given [tex]\( x \)[/tex] values. Here are the detailed steps for each calculation:

1. For [tex]\( x = 5 \)[/tex]:
[tex]\[ f(5) = \sqrt{5 - 5} + 3 = \sqrt{0} + 3 = 0 + 3 = 3 \][/tex]
Therefore, when [tex]\( x = 5 \)[/tex], [tex]\( y = 3 \)[/tex].

2. For [tex]\( x = 6 \)[/tex]:
[tex]\[ f(6) = \sqrt{6 - 5} + 3 = \sqrt{1} + 3 = 1 + 3 = 4 \][/tex]
Therefore, when [tex]\( x = 6 \)[/tex], [tex]\( y = 4 \)[/tex].

3. For [tex]\( x = 9 \)[/tex]:
[tex]\[ f(9) = \sqrt{9 - 5} + 3 = \sqrt{4} + 3 = 2 + 3 = 5 \][/tex]
Therefore, when [tex]\( x = 9 \)[/tex], [tex]\( y = 5 \)[/tex].

4. For [tex]\( x = 14 \)[/tex]:
[tex]\[ f(14) = \sqrt{14 - 5} + 3 = \sqrt{9} + 3 = 3 + 3 = 6 \][/tex]
Therefore, when [tex]\( x = 14 \)[/tex], [tex]\( y = 6 \)[/tex].

After these calculations, the completed table is as follows:
[tex]\[ \begin{tabular}{c|c} x & y \\ \hline 5 & 3 \\ 6 & 4 \\ 9 & 5 \\ 14 & 6 \\ \end{tabular} \][/tex]

So, the values are:
- When [tex]\( x = 5 \)[/tex], [tex]\( y = 3 \)[/tex].
- When [tex]\( x = 6 \)[/tex], [tex]\( y = 4 \)[/tex].
- When [tex]\( x = 9 \)[/tex], [tex]\( y = 5 \)[/tex].
- When [tex]\( x = 14 \)[/tex], [tex]\( y = 6 \)[/tex].