Answer :
Let's fill in the table given the values of diameter, radius, and area for the circles.
### Circle A
- Radius: [tex]\(49 \text{ cm}\)[/tex]
- Diameter: The diameter of a circle is twice the radius. Thus, the diameter is [tex]\(2 \times 49 = 98 \text{ cm}\)[/tex].
- Area: Using the formula for the area of a circle [tex]\(A = \pi r^2\)[/tex] with [tex]\(\pi = \frac{22}{7}\)[/tex] and [tex]\(r = 49 \text{ cm}\)[/tex], the area is given as [tex]\(7546.0 \text{ cm}^2\)[/tex].
### Circle B
- Diameter: [tex]\(7 \text{ cm}\)[/tex]
- Radius: The radius is half of the diameter. Thus, the radius is [tex]\(\frac{7}{2} = 3.5 \text{ cm}\)[/tex].
- Area: Using the formula for the area of a circle [tex]\(A = \pi r^2\)[/tex] with [tex]\(\pi = \frac{22}{7}\)[/tex] and [tex]\(r = 3.5 \text{ cm}\)[/tex], the area is given as [tex]\(38.5 \text{ cm}^2\)[/tex].
### Circle C
- Diameter: [tex]\(21 \text{ cm}\)[/tex]
- Radius: The radius is half of the diameter. Thus, the radius is [tex]\(\frac{21}{2} = 10.5 \text{ cm}\)[/tex].
- Area: Using the formula for the area of a circle [tex]\(A = \pi r^2\)[/tex] with [tex]\(\pi = \frac{22}{7}\)[/tex] and [tex]\(r = 10.5 \text{ cm}\)[/tex], the area is given as [tex]\(346.5 \text{ cm}^2\)[/tex].
### Circle D
- Radius: [tex]\(35 \text{ cm}\)[/tex]
- Diameter: The diameter of a circle is twice the radius. Thus, the diameter is [tex]\(2 \times 35 = 70 \text{ cm}\)[/tex].
- Area: Using the formula for the area of a circle [tex]\(A = \pi r^2\)[/tex] with [tex]\(\pi = \frac{22}{7}\)[/tex] and [tex]\(r = 35 \text{ cm}\)[/tex], the area is given as [tex]\(3850.0 \text{ cm}^2\)[/tex].
Filling in the provided table with the calculated values:
[tex]\[ \begin{tabular}{|l|l|l|l|} \hline Circle & Diameter & Radius & Area \\ \hline વ) & $98 \text{ cm}$ & $49 \text{ cm}$ & $7546.0 \text{ cm}^2$ \\ \hline b) & $7 \text{ cm}$ & $3.5 \text{ cm}$ & $38.5 \text{ cm}^2$ \\ \hline \&) & $21 \text{ cm}$ & $10.5 \text{ cm}$ & $346.5 \text{ cm}^2$ \\ \hline ф) & $70 \text{ cm}$ & $35 \text{ cm}$ & $3850.0 \text{ cm}^2$ \\ \hline \end{tabular} \][/tex]
### Circle A
- Radius: [tex]\(49 \text{ cm}\)[/tex]
- Diameter: The diameter of a circle is twice the radius. Thus, the diameter is [tex]\(2 \times 49 = 98 \text{ cm}\)[/tex].
- Area: Using the formula for the area of a circle [tex]\(A = \pi r^2\)[/tex] with [tex]\(\pi = \frac{22}{7}\)[/tex] and [tex]\(r = 49 \text{ cm}\)[/tex], the area is given as [tex]\(7546.0 \text{ cm}^2\)[/tex].
### Circle B
- Diameter: [tex]\(7 \text{ cm}\)[/tex]
- Radius: The radius is half of the diameter. Thus, the radius is [tex]\(\frac{7}{2} = 3.5 \text{ cm}\)[/tex].
- Area: Using the formula for the area of a circle [tex]\(A = \pi r^2\)[/tex] with [tex]\(\pi = \frac{22}{7}\)[/tex] and [tex]\(r = 3.5 \text{ cm}\)[/tex], the area is given as [tex]\(38.5 \text{ cm}^2\)[/tex].
### Circle C
- Diameter: [tex]\(21 \text{ cm}\)[/tex]
- Radius: The radius is half of the diameter. Thus, the radius is [tex]\(\frac{21}{2} = 10.5 \text{ cm}\)[/tex].
- Area: Using the formula for the area of a circle [tex]\(A = \pi r^2\)[/tex] with [tex]\(\pi = \frac{22}{7}\)[/tex] and [tex]\(r = 10.5 \text{ cm}\)[/tex], the area is given as [tex]\(346.5 \text{ cm}^2\)[/tex].
### Circle D
- Radius: [tex]\(35 \text{ cm}\)[/tex]
- Diameter: The diameter of a circle is twice the radius. Thus, the diameter is [tex]\(2 \times 35 = 70 \text{ cm}\)[/tex].
- Area: Using the formula for the area of a circle [tex]\(A = \pi r^2\)[/tex] with [tex]\(\pi = \frac{22}{7}\)[/tex] and [tex]\(r = 35 \text{ cm}\)[/tex], the area is given as [tex]\(3850.0 \text{ cm}^2\)[/tex].
Filling in the provided table with the calculated values:
[tex]\[ \begin{tabular}{|l|l|l|l|} \hline Circle & Diameter & Radius & Area \\ \hline વ) & $98 \text{ cm}$ & $49 \text{ cm}$ & $7546.0 \text{ cm}^2$ \\ \hline b) & $7 \text{ cm}$ & $3.5 \text{ cm}$ & $38.5 \text{ cm}^2$ \\ \hline \&) & $21 \text{ cm}$ & $10.5 \text{ cm}$ & $346.5 \text{ cm}^2$ \\ \hline ф) & $70 \text{ cm}$ & $35 \text{ cm}$ & $3850.0 \text{ cm}^2$ \\ \hline \end{tabular} \][/tex]