Given the problem, we need to determine the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\((m \circ n)(x) = 2\)[/tex]. Essentially, we need to find the [tex]\( x \)[/tex] such that [tex]\( n(x) \)[/tex] results in [tex]\( 2 \)[/tex].
We are given the following pairs of [tex]\( x \)[/tex] and [tex]\( n(s) \)[/tex] values:
[tex]\[
\begin{array}{cccccc}
x & -5 & -3 & -1 & 3 & 5 \\
n(s) & 2 & 1 & -3 & 1.5 & 0
\end{array}
\][/tex]
From this table, we are particularly interested in finding [tex]\( x \)[/tex] for which [tex]\( n(s) = 2 \)[/tex].
We see from the table that when [tex]\( n(s) = 2 \)[/tex], the corresponding [tex]\( x \)[/tex] value is [tex]\( -5 \)[/tex].
Thus, the value of [tex]\( x \)[/tex] when [tex]\( (m \circ n)(x) = 2 \)[/tex] is:
[tex]\[
\boxed{-5}
\][/tex]