[tex]\[
\begin{array}{cccccc}
x & -5 & -3 & -1 & 3 & 5 \\
n(s) & 2 & 1 & -3 & 1.5 & 0
\end{array}
\][/tex]

What is the value of [tex][tex]$x$[/tex][/tex] when [tex][tex]$(m \circ n)(x)=2$[/tex][/tex]?

A. 3
B. -1.5
C. 0
D. -3



Answer :

Given the problem, we need to determine the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\((m \circ n)(x) = 2\)[/tex]. Essentially, we need to find the [tex]\( x \)[/tex] such that [tex]\( n(x) \)[/tex] results in [tex]\( 2 \)[/tex].

We are given the following pairs of [tex]\( x \)[/tex] and [tex]\( n(s) \)[/tex] values:

[tex]\[ \begin{array}{cccccc} x & -5 & -3 & -1 & 3 & 5 \\ n(s) & 2 & 1 & -3 & 1.5 & 0 \end{array} \][/tex]

From this table, we are particularly interested in finding [tex]\( x \)[/tex] for which [tex]\( n(s) = 2 \)[/tex].

We see from the table that when [tex]\( n(s) = 2 \)[/tex], the corresponding [tex]\( x \)[/tex] value is [tex]\( -5 \)[/tex].

Thus, the value of [tex]\( x \)[/tex] when [tex]\( (m \circ n)(x) = 2 \)[/tex] is:

[tex]\[ \boxed{-5} \][/tex]