Find the linear equation between [tex][tex]$(-1,5)$[/tex][/tex] and [tex][tex]$(3,2)$[/tex][/tex].

Select one:
A. [tex][tex]$y = -\frac{3}{4}x + 4$[/tex][/tex]
B. [tex][tex]$y = -3x + 4$[/tex][/tex]
C. [tex][tex]$y = 4x + 7$[/tex][/tex]
D. [tex][tex]$y = -\frac{3}{4}x + \frac{17}{4}$[/tex][/tex]



Answer :

To find the linear equation between the points [tex]\((-1, 5)\)[/tex] and [tex]\((3, 2)\)[/tex], we follow these steps:

1. Calculate the Slope (m):

The slope of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points:
[tex]\[ m = \frac{2 - 5}{3 - (-1)} = \frac{2 - 5}{3 + 1} = \frac{-3}{4} = -0.75 \][/tex]

2. Calculate the y-intercept (b):

The equation of a line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
To find [tex]\(b\)[/tex], we will use one of the given points, say [tex]\((-1, 5)\)[/tex]. Substituting [tex]\(x = -1\)[/tex] and [tex]\(y = 5\)[/tex] into the equation, along with [tex]\(m = -0.75\)[/tex]:
[tex]\[ 5 = (-0.75)(-1) + b \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ 5 = 0.75 + b \][/tex]
[tex]\[ b = 5 - 0.75 = 4.25 \][/tex]

3. Form the Equation:

Now that we have the slope ([tex]\(m = -0.75\)[/tex]) and the y-intercept ([tex]\(b = 4.25\)[/tex]), the equation of the line is:
[tex]\[ y = -0.75x + 4.25 \][/tex]
Alternatively, writing it in fraction form:
[tex]\[ y = -\frac{3}{4}x + \frac{17}{4} \][/tex]

Thus, the correct equation of the line is:

d. [tex]\(y = -\frac{3}{4}x + \frac{17}{4}\)[/tex]

So the correct answer is [tex]\( \boxed{d} \)[/tex].