Answer :

Let's solve the equation step-by-step:

[tex]\[ 15x + (-x + 6) + (-5x + 4) = 7x + 23 - x + (3 - 2x) \][/tex]

First, simplify each side by combining like terms.

For the left-hand side:

[tex]\[ 15x + (-x + 6) + (-5x + 4) \][/tex]

Combine the terms involving [tex]\(x\)[/tex]:

[tex]\[ 15x - x - 5x = 9x \][/tex]

Combine the constant terms:

[tex]\[ 6 + 4 = 10 \][/tex]

So, the left-hand side simplifies to:

[tex]\[ 9x + 10 \][/tex]

Next, simplify the right-hand side:

[tex]\[ 7x + 23 - x + (3 - 2x) \][/tex]

Combine the terms involving [tex]\(x\)[/tex]:

[tex]\[ 7x - x - 2x = 4x \][/tex]

Combine the constant terms:

[tex]\[ 23 + 3 = 26 \][/tex]

So, the right-hand side simplifies to:

[tex]\[ 4x + 26 \][/tex]

Now, we have the simplified equation:

[tex]\[ 9x + 10 = 4x + 26 \][/tex]

Next, isolate the variable [tex]\(x\)[/tex]. Subtract [tex]\(4x\)[/tex] from both sides:

[tex]\[ 9x - 4x + 10 = 4x - 4x + 26 \][/tex]

This simplifies to:

[tex]\[ 5x + 10 = 26 \][/tex]

Subtract 10 from both sides to further isolate the term involving [tex]\(x\)[/tex]:

[tex]\[ 5x = 16 \][/tex]

Finally, divide both sides by 5:

[tex]\[ x = \frac{16}{5} \][/tex]

So, the solution to the equation is:

[tex]\[ x = \frac{16}{5} \][/tex]