Lia1228
Answered

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\begin{tabular}{l}
Exoplanet \\
Name
\end{tabular} & \begin{tabular}{l}
Mass of \\
Host Star \\
(solar \\
masses)
\end{tabular} & \begin{tabular}{l}
Period of \\
Revolution \\
(Earth \\
years)
\end{tabular} & \begin{tabular}{l}
Average \\
Distance to \\
Host Star \\
(AU)
\end{tabular} & \begin{tabular}{l}
Habitable \\
Zone Inner \\
Limit (AU)
\end{tabular} & \begin{tabular}{l}
Habitable \\
Zone Outer \\
Limit (AU)
\end{tabular} & \begin{tabular}{l}
Is it possible \\
that this \\
planet stays \\
within the \\
habitable \\
zone?
\end{tabular} \\
\hline
\begin{tabular}{l}
Kepler 79 \\
b
\end{tabular} & 1.165 & 0.0369 & 0.116 & 1.711 & 4.229 & No \\
\hline
\begin{tabular}{l}
Kepler 36 \\
b
\end{tabular} & 1.071 & 0.0379 & 0.115 & 1.994 & 4.922 & No \\
\hline
\begin{tabular}{l}
Kepler 18 \\
b
\end{tabular} & 0.972 & 0.00962 & 0.105 & 1.463 & 3.227 & Yes \\
\hline
\begin{tabular}{l}
Kepler \\
186 b
\end{tabular} & 0.544 & 0.356 & 0.113 & 0.242 & 0.464 & No \\
\hline
\begin{tabular}{l}
Kepler \\
[tex]$442 f$[/tex]
\end{tabular} & 0.61 & 0.3075 & 0.112 & 0.252 & 0.531 & No \\
\hline
\begin{tabular}{l}
HD \\
[tex]$17156 b$[/tex]
\end{tabular} & 1.275 & 0.05813 & 0.114 & 0.986 & 1.726 & No \\
\hline
\begin{tabular}{l}
HD 20782 \\
b
\end{tabular} & 1.43 & 1.605 & 0.116 & 2.613 & 4.632 & No \\
\hline
\begin{tabular}{l}
Trappist 1 \\
b
\end{tabular} & 0.089 & 0.0252 & 0.106 & 0.023 & 0.048 & Yes \\
\hline
\end{tabular}



Answer :

Certainly! Let's delve into the step-by-step solution for the problem at hand based on the provided data:

We are given the following initial details:
- The initial amount of money available is 23 units.
- The number of bagels to be purchased is 5.
- The cost per bagel is 3 units.

From these details, we need to determine two things:
1. The total amount of money spent on the bagels.
2. The amount of money remaining after purchasing the bagels.

To find the total amount spent on the bagels:
[tex]\[ \text{Total money spent} = \text{Number of bagels} \times \text{Cost per bagel} \][/tex]

Given:
- Number of bagels = 5
- Cost per bagel = 3

Substituting the given values:
[tex]\[ \text{Total money spent} = 5 \times 3 = 15 \][/tex]

Therefore, the total money spent on purchasing the bagels is 15 units.

Next, we calculate the amount of money left after purchasing the bagels:
[tex]\[ \text{Money left} = \text{Initial amount of money} - \text{Total money spent} \][/tex]

Given:
- Initial amount of money = 23
- Total money spent = 15

Substituting the given values:
[tex]\[ \text{Money left} = 23 - 15 = 8 \][/tex]

Therefore, the amount of money remaining after purchasing the bagels is 8 units.

In summary, the total money spent on the bagels is 15 units, and the remaining money after the purchase is 8 units.