What is the pattern in the values as the exponents increase?

\begin{tabular}{|c|c|}
\hline Powers of 3 & Value \\
\hline [tex]$3^{-1}$[/tex] & [tex]$\frac{1}{3}$[/tex] \\
\hline [tex]$3^0$[/tex] & 1 \\
\hline [tex]$3^1$[/tex] & 3 \\
\hline [tex]$3^2$[/tex] & 9 \\
\hline
\end{tabular}

A. add 3 to the previous value

B. subtract 3 from the previous value

C. divide the previous value by 3

D. multiply the previous value by 3



Answer :

Let's analyze the pattern in the values given for the powers of 3:

[tex]\[ \begin{array}{|c|c|} \hline \text{Powers of 3} & \text{Value} \\ \hline 3^{-1} & \frac{1}{3} \\ \hline 3^0 & 1 \\ \hline 3^1 & 3 \\ \hline 3^2 & 9 \\ \hline \end{array} \][/tex]

### Step-by-Step Analysis:

1. Starting with [tex]\(3^{-1}\)[/tex] to [tex]\(3^0\)[/tex]:
- [tex]\(3^{-1} = \frac{1}{3}\)[/tex]
- [tex]\(3^0 = 1\)[/tex]

To go from [tex]\(\frac{1}{3}\)[/tex] to 1, we can observe that:
[tex]\[ \frac{1}{3} \times 3 = 1 \][/tex]

2. Moving from [tex]\(3^0\)[/tex] to [tex]\(3^1\)[/tex]:
- [tex]\(3^0 = 1\)[/tex]
- [tex]\(3^1 = 3\)[/tex]

To go from 1 to 3, we see that:
[tex]\[ 1 \times 3 = 3 \][/tex]

3. Continuing to [tex]\(3^1\)[/tex] to [tex]\(3^2\)[/tex]:
- [tex]\(3^1 = 3\)[/tex]
- [tex]\(3^2 = 9\)[/tex]

To go from 3 to 9, we notice:
[tex]\[ 3 \times 3 = 9 \][/tex]

### Conclusion:
In each step, the value is obtained by multiplying the previous value by 3. Hence, the correct pattern as the exponents increase is:

[tex]\[ \text{multiply the previous value by 3} \][/tex]

So, the correct choice here is:
- multiply the previous value by 3