What is the pattern in the values as the exponents increase?

\begin{tabular}{|c|c|}
\hline
Powers of 2 & Value \\
\hline
[tex]$2^{-5}$[/tex] & [tex]$\frac{1}{32}$[/tex] \\
\hline
[tex]$2^{-4}$[/tex] & [tex]$\frac{1}{16}$[/tex] \\
\hline
[tex]$2^{-3}$[/tex] & [tex]$\frac{1}{8}$[/tex] \\
\hline
[tex]$2^{-2}$[/tex] & [tex]$\frac{1}{4}$[/tex] \\
\hline
[tex]$2^{-1}$[/tex] & [tex]$\frac{1}{2}$[/tex] \\
\hline
[tex]$2^0$[/tex] & 1 \\
\hline
\end{tabular}



Answer :

Sure! Let's analyze the given table to understand the pattern in the values as the exponents increase.

[tex]\[ \begin{tabular}{|c|c|} \hline \text{Powers of 2} & \text{Value} \\ \hline 2^{-5} & \frac{1}{32} \\ \hline 2^{-4} & \frac{1}{16} \\ \hline 2^{-3} & \frac{1}{8} \\ \hline 2^{-2} & \frac{1}{4} \\ \hline 2^{-1} & \frac{1}{2} \\ \hline 2^0 & 1 \\ \hline \end{tabular} \][/tex]

1. Start with Exponent -5:
- For [tex]\(2^{-5}\)[/tex], the value is [tex]\(\frac{1}{32}\)[/tex], which can also be written as 0.03125.

2. Exponent -4:
- For [tex]\(2^{-4}\)[/tex], the value is [tex]\(\frac{1}{16}\)[/tex] or 0.0625.
- Notice that [tex]\(0.0625 = 2 \times 0.03125\)[/tex]. This means that each subsequent value is double the previous value.

3. Exponent -3:
- For [tex]\(2^{-3}\)[/tex], the value is [tex]\(\frac{1}{8}\)[/tex] or 0.125.
- Similarly, [tex]\(0.125 = 2 \times 0.0625\)[/tex].

4. Exponent -2:
- For [tex]\(2^{-2}\)[/tex], the value is [tex]\(\frac{1}{4}\)[/tex] or 0.25.
- Likewise, [tex]\(0.25 = 2 \times 0.125\)[/tex].

5. Exponent -1:
- For [tex]\(2^{-1}\)[/tex], the value is [tex]\(\frac{1}{2}\)[/tex] or 0.5.
- Here, [tex]\(0.5 = 2 \times 0.25\)[/tex].

6. Exponent 0:
- For [tex]\(2^0\)[/tex], the value is 1.
- Consequently, [tex]\(1 = 2 \times 0.5\)[/tex].

### Observing the Pattern:

- Each value in the table is exactly twice the previous value.
- This makes sense mathematically because increasing the exponent by 1 for base 2 doubles the result.

To summarize:
- For each increase in the exponent by 1 in [tex]\(2^n\)[/tex], the corresponding value doubles.

Thus, the pattern in the values as the exponents increase is that each subsequent value is double the previous value.