Find the sum of the geometric sequence −3, 15, −75, 375, ... when there are 9 terms and select the correct answer below. (2 points)


−976,563

976,563

1,464,843

976,562



Answer :

Answer: −976,563

Step-by-step explanation:

    Since we have a negative constant of proportionality, the 9th term must be negative. This means our answer will be −976,563, however, I will still show the steps to get there mathematically.

    We will find the sum of the geometric sequence to 9 terms with the following formula. Here, a is the first term (-3), r is the constant of proportionality (15/-3=-5), and n is the number of terms (9).

         [tex]\displaystyle S_n=\frac{a(r^n-1)}{r-1}[/tex]

         [tex]\displaystyle S_n=\frac{-3((-5)^9-1)}{-5-1}[/tex]

         [tex]\displaystyle S_n=\frac{-3(-1,953,125-1)}{-5-1}[/tex]

         [tex]\displaystyle S_n=\frac{-3(-1,953,126)}{-6}[/tex]

         [tex]\displaystyle S_n=\frac{5,859,378}{-6}[/tex]

         [tex]\displaystyle S_n=-976,563[/tex]