The equation [tex][tex]$y - 2 = 3(x + 1)$[/tex][/tex] is in point-slope form. Which is the slope-intercept form?

[tex]
\begin{array}{l}
A. \; y = 3x + 1 \\
B. \; y = 3x - 3 \\
C. \; y = 3x + 5
\end{array}
[/tex]



Answer :

To convert the given point-slope form equation [tex]\(y - 2 = 3(x + 1)\)[/tex] into the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept, follow these steps:

1. Start with the point-slope form equation:
[tex]\[ y - 2 = 3(x + 1) \][/tex]

2. Distribute the slope (3) to the terms inside the parenthesis:
[tex]\[ y - 2 = 3x + 3 \][/tex]

3. Isolate [tex]\(y\)[/tex] by adding [tex]\(2\)[/tex] to both sides of the equation:
[tex]\[ y = 3x + 3 + 2 \][/tex]

4. Simplify the right side of the equation:
[tex]\[ y = 3x + 5 \][/tex]

So, the slope-intercept form of the equation [tex]\(y - 2 = 3(x + 1)\)[/tex] is [tex]\(y = 3x + 5\)[/tex].

Therefore, the correct choice from the given options:
[tex]\[ \begin{array}{l} 1.\quad y = 3x + 1 \\ 2.\quad y = 3x - 3 \\ 3.\quad y = 3x + 5 \end{array} \][/tex]

is:
[tex]\[ y = 3x + 5 \][/tex]

So, the correct option is:
[tex]\[ \boxed{3} \][/tex]