Select the correct answer.

What is the solution set of this inequality?

[tex]\[ 8x - 1 \ \textgreater \ 3x + 14 \][/tex]

A. [tex]\( x \ \textgreater \ -3 \)[/tex]
B. [tex]\( x \ \textgreater \ -\frac{15}{11} \)[/tex]
C. [tex]\( x \ \textless \ -3 \)[/tex]
D. [tex]\( x \ \textless \ -\frac{15}{11} \)[/tex]



Answer :

Sure, let's solve the inequality [tex]\( 8x - 1 > 3x + 14 \)[/tex] step-by-step:

1. Isolate the [tex]\( x \)[/tex] terms on one side:

To achieve this, we'll first subtract [tex]\( 3x \)[/tex] from both sides of the inequality:

[tex]\[ 8x - 1 - 3x > 3x + 14 - 3x \][/tex]
[tex]\[ 5x - 1 > 14 \][/tex]

2. Isolate the constant term on the other side:

Next, we'll add 1 to both sides to move the constant term:

[tex]\[ 5x - 1 + 1 > 14 + 1 \][/tex]
[tex]\[ 5x > 15 \][/tex]

3. Solve for [tex]\( x \)[/tex]:

Finally, we'll divide both sides of the inequality by 5:

[tex]\[ \frac{5x}{5} > \frac{15}{5} \][/tex]
[tex]\[ x > 3 \][/tex]

Hence, the solution set for the inequality [tex]\( 8x - 1 > 3x + 14 \)[/tex] is [tex]\( x > 3 \)[/tex]. Given the options, none of them seem to exactly match. However, the correct solution derived here is [tex]\( x > 3 \)[/tex]. Double-check the given options for any possible matches or corrections.