Type the correct answer in the box. Use numerals instead of words.

Consider this expression.
[tex]\ \textless \ br/\ \textgreater \ \sqrt{a^2+12}+|b|\ \textless \ br/\ \textgreater \ [/tex]

When [tex]a=-2[/tex] and [tex]b=14[/tex], the value of the expression is [tex]\square[/tex]



Answer :

To solve the expression [tex]\(\sqrt{a^2 + 12} + |b|\)[/tex] when [tex]\(a = -2\)[/tex] and [tex]\(b = 14\)[/tex], follow these steps:

1. Calculate [tex]\(a^2\)[/tex]:
[tex]\[ a = -2 \implies a^2 = (-2)^2 = 4 \][/tex]

2. Add 12 to [tex]\(a^2\)[/tex]:
[tex]\[ 4 + 12 = 16 \][/tex]

3. Calculate the square root:
[tex]\[ \sqrt{16} = 4.0 \][/tex]

4. Calculate the absolute value of [tex]\(b\)[/tex]:
[tex]\[ b = 14 \implies |14| = 14 \][/tex]

5. Add the results together:
[tex]\[ 4.0 + 14 = 18.0 \][/tex]

Thus, the value of the expression is [tex]\(\boxed{18.0}\)[/tex].