\begin{tabular}{|l|c|c|c|c|}
\hline & \begin{tabular}{c}
Black \\
Fur and \\
Black \\
Eyes
\end{tabular} & \begin{tabular}{c}
Black \\
Fur and \\
Red \\
Eyes
\end{tabular} & \begin{tabular}{c}
White \\
Fur and \\
Black \\
Eyes
\end{tabular} & \begin{tabular}{c}
White \\
Fur and \\
Red \\
Eyes
\end{tabular} \\
\hline \begin{tabular}{c}
Predicted \\
Fraction
\end{tabular} & [tex]$1 / 16$[/tex] & [tex]$0 / 16$[/tex] & [tex]$0 / 16$[/tex] & [tex]$0 / 16$[/tex] \\
\hline
\end{tabular}



Answer :

To determine the probability of each combination of fur and eye color, let's analyze the given results.

Given:

- Black Fur and Black Eyes: Predicted fraction is [tex]\( \frac{1}{16} \)[/tex].
- Black Fur and Red Eyes: Predicted fraction is [tex]\( \frac{0}{16} \)[/tex].
- White Fur and Black Eyes: Predicted fraction is [tex]\( \frac{0}{16} \)[/tex].
- White Fur and Red Eyes: Predicted fraction is [tex]\( \frac{0}{16} \)[/tex].

### Step-by-Step Calculation:

1. Black Fur and Black Eyes:
- The fraction is [tex]\( \frac{1}{16} \)[/tex].
- In decimal form, this is [tex]\( \frac{1}{16} = 0.0625 \)[/tex].

2. Black Fur and Red Eyes:
- The fraction is [tex]\( \frac{0}{16} \)[/tex].
- In decimal form, this is [tex]\( \frac{0}{16} = 0.0 \)[/tex].

3. White Fur and Black Eyes:
- The fraction is [tex]\( \frac{0}{16} \)[/tex].
- In decimal form, this is [tex]\( \frac{0}{16} = 0.0 \)[/tex].

4. White Fur and Red Eyes:
- The fraction is [tex]\( \frac{0}{16} \)[/tex].
- In decimal form, this is [tex]\( \frac{0}{16} = 0.0 \)[/tex].

Thus, in an easy-to-read format:

- Probability of Black Fur and Black Eyes: 0.0625
- Probability of Black Fur and Red Eyes: 0.0
- Probability of White Fur and Black Eyes: 0.0
- Probability of White Fur and Red Eyes: 0.0

These fractions correspond to the given predicted fractions in the question.