Determine the exact value of [tex]\csc \left(\frac{4 \pi}{3}\right)[/tex].

A. [tex]-\frac{\sqrt{3}}{2}[/tex]

B. [tex]\frac{\sqrt{3}}{2}[/tex]

C. [tex]-\frac{2}{\sqrt{3}}[/tex]

D. [tex]\frac{2}{\sqrt{3}}[/tex]



Answer :

To determine the exact value of [tex]\(\csc\left(\frac{4\pi}{3}\right)\)[/tex], let's follow these steps:

### Step 1: Understand the Argument and its Quadrant
The angle [tex]\(\frac{4\pi}{3}\)[/tex] is in standard position. This angle is measured in radians. First, let's convert [tex]\(\frac{4\pi}{3}\)[/tex] to degrees to understand its position:
[tex]\[ \frac{4\pi}{3} \times \frac{180^\circ}{\pi} = 240^\circ \][/tex]
So, [tex]\(\frac{4\pi}{3}\)[/tex] radians is equivalent to [tex]\(240^\circ\)[/tex].

### Step 2: Determine the Sine of the Angle
The angle [tex]\(240^\circ\)[/tex] lies in the third quadrant, where sine is negative. The reference angle for [tex]\(240^\circ\)[/tex] is:
[tex]\[ 240^\circ - 180^\circ = 60^\circ \][/tex]
Given that [tex]\(\sin(60^\circ) = \frac{\sqrt{3}}{2}\)[/tex], and since sine is negative in the third quadrant,
[tex]\[ \sin\left(240^\circ\right) = \sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2} \][/tex]

### Step 3: Calculate the Cosecant
The cosecant function is the reciprocal of the sine function. Therefore,
[tex]\[ \csc\left(\frac{4\pi}{3}\right) = \frac{1}{\sin\left(\frac{4\pi}{3}\right)} \][/tex]
Substitute the value of [tex]\(\sin\left(\frac{4\pi}{3}\right)\)[/tex] we found in Step 2:
[tex]\[ \csc\left(\frac{4\pi}{3}\right) = \frac{1}{-\frac{\sqrt{3}}{2}} \][/tex]
Simplify the reciprocal:
[tex]\[ \csc\left(\frac{4\pi}{3}\right) = -\frac{2}{\sqrt{3}} \][/tex]

### Step 4: Simplify and Verify the Answer
So, the exact value of [tex]\(\csc\left(\frac{4\pi}{3}\right)\)[/tex] is:
[tex]\[ -\frac{2}{\sqrt{3}} \][/tex]

Thus, the correct answer is:
[tex]\[ -\frac{2}{\sqrt{3}} \][/tex]