Find the inverse of the matrix below. If necessary, round to the nearest hundredth.

[tex]\[
\left[\begin{array}{cc}
2 & 0 \\
9 & 1
\end{array}\right]
\][/tex]



Answer :

To find the inverse of the matrix

[tex]\[ \begin{pmatrix} 2 & 0 \\ 9 & 1 \end{pmatrix}, \][/tex]

we follow these steps:

### Step 1: Determine the determinant
The determinant of the matrix

[tex]\[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]

is calculated as

[tex]\[ \text{det} = ad - bc. \][/tex]

For our specific matrix:

[tex]\[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 9 & 1 \end{pmatrix}, \][/tex]

the determinant is:

[tex]\[ \text{det} = (2)(1) - (0)(9) = 2. \][/tex]

### Step 2: Check if the determinant is non-zero
Since the determinant (2) is non-zero, the matrix is invertible.

### Step 3: Find the adjugate of the matrix
The adjugate (or adjoint) of the matrix

[tex]\[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]

is computed by swapping the elements on the main diagonal and changing the sign of the off-diagonal elements:

[tex]\[ \text{adj} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}. \][/tex]

Applying this to our matrix:

[tex]\[ \begin{pmatrix} 2 & 0 \\ 9 & 1 \end{pmatrix} , \][/tex]

the adjugate matrix is:

[tex]\[ \begin{pmatrix} 1 & -0 \\ -9 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -9 & 2 \end{pmatrix}. \][/tex]

### Step 4: Calculate the inverse
The inverse of a matrix

[tex]\[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]

is given by

[tex]\[ \text{inverse} = \frac{1}{\text{det}} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}. \][/tex]

For our matrix, this becomes:

[tex]\[ \text{inverse} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ -9 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ -\frac{9}{2} & 1 \end{pmatrix} = \begin{pmatrix} 0.5 & 0 \\ -4.5 & 1 \end{pmatrix}. \][/tex]

Thus, the inverse of the matrix

[tex]\[ \begin{pmatrix} 2 & 0 \\ 9 & 1 \end{pmatrix} \][/tex]

is

[tex]\[ \begin{pmatrix} 0.5 & 0 \\ -4.5 & 1 \end{pmatrix}. \][/tex]

### Step 5: Rounding (if necessary)
In this case, the matrix elements are already precise to the hundredth place, so no additional rounding is necessary.

Therefore, the inverse of the given matrix is

[tex]\[ \begin{pmatrix} 0.5 & 0 \\ -4.5 & 1 \end{pmatrix}. \][/tex]