Select the correct answer.

A drugstore sells vitamins in bottles with different pill counts. The price of each bottle is shown in the table below.

\begin{tabular}{|c|c|}
\hline
\begin{tabular}{c}
Number of \\
Pills
\end{tabular} & Price \\
\hline 50 & \[tex]$1.85 \\
\hline 100 & \$[/tex]3.70 \\
\hline 150 & \[tex]$5.55 \\
\hline 200 & \$[/tex]7.40 \\
\hline 250 & \[tex]$9.25 \\
\hline
\end{tabular}

About how much does one vitamin cost?

A. \$[/tex]0.37

B. \[tex]$0.04

C. \$[/tex]0.02

D. \[tex]$0.92

E. \$[/tex]1.85



Answer :

To determine the approximate cost of one vitamin, we should calculate the price per vitamin for each bottle size and then analyze these values.

Given the prices for each size are:

- A bottle with 50 pills costs [tex]$1.85 - A bottle with 100 pills costs $[/tex]3.70
- A bottle with 150 pills costs [tex]$5.55 - A bottle with 200 pills costs $[/tex]7.40
- A bottle with 250 pills costs [tex]$9.25 We calculate the cost per vitamin for each bottle. 1. For 50 pills: \[ \text{Cost per vitamin} = \frac{\$[/tex]1.85}{50} = \[tex]$0.037 \] 2. For 100 pills: \[ \text{Cost per vitamin} = \frac{\$[/tex]3.70}{100} = \[tex]$0.037 \] 3. For 150 pills: \[ \text{Cost per vitamin} = \frac{\$[/tex]5.55}{150} = \[tex]$0.037 \] 4. For 200 pills: \[ \text{Cost per vitamin} = \frac{\$[/tex]7.40}{200} = \[tex]$0.037 \] 5. For 250 pills: \[ \text{Cost per vitamin} = \frac{\$[/tex]9.25}{250} = \[tex]$0.037 \] We see that the cost per vitamin for any bottle size is: \[ \$[/tex]0.037 \]

So, the approximate cost of one vitamin is:

[tex]\[ \$0.04 \][/tex]

Thus, the correct answer is:
[tex]\[ \$ 0.04 \][/tex]