Answer :

To simplify the expression

[tex]\[ \frac{\sqrt{75a} + \sqrt{12a} - \sqrt{27a}}{\sqrt{3a}}, \][/tex]

let's break it down step by step.

1. Simplify the individual square roots in the numerator:
- [tex]\(\sqrt{75a}\)[/tex]
[tex]\[ \sqrt{75a} = \sqrt{25 \cdot 3a} = \sqrt{25} \cdot \sqrt{3a} = 5 \sqrt{3a} \][/tex]
- [tex]\(\sqrt{12a}\)[/tex]
[tex]\[ \sqrt{12a} = \sqrt{4 \cdot 3a} = \sqrt{4} \cdot \sqrt{3a} = 2 \sqrt{3a} \][/tex]
- [tex]\(\sqrt{27a}\)[/tex]
[tex]\[ \sqrt{27a} = \sqrt{9 \cdot 3a} = \sqrt{9} \cdot \sqrt{3a} = 3 \sqrt{3a} \][/tex]

2. Substitute these simplified forms back into the numerator:
[tex]\[ 5 \sqrt{3a} + 2 \sqrt{3a} - 3 \sqrt{3a} \][/tex]

3. Combine like terms:
[tex]\[ 5 \sqrt{3a} + 2 \sqrt{3a} - 3 \sqrt{3a} = (5 + 2 - 3) \sqrt{3a} = 4 \sqrt{3a} \][/tex]

4. The original expression is now:
[tex]\[ \frac{4 \sqrt{3a}}{\sqrt{3a}} \][/tex]

5. Simplify the fraction:
[tex]\[ \frac{4 \sqrt{3a}}{\sqrt{3a}} = 4 \][/tex]

Therefore, the simplified form of the given expression is:

[tex]\[ \boxed{4} \][/tex]

Other Questions