Answered

The formula to calculate the gravitational force between two objects is

[tex]\[ F_g = \frac{G M_1 M_2}{r^2} \][/tex]

where [tex]\( M_1 \)[/tex] and [tex]\( M_2 \)[/tex] are the masses of the objects, [tex]\( G \)[/tex] is the gravitational constant, and [tex]\( r \)[/tex] is the distance between the objects.

Solve for the positive value of [tex]\( r \)[/tex] in terms of [tex]\( F_g \)[/tex], [tex]\( G \)[/tex], [tex]\( M_1 \)[/tex], and [tex]\( M_2 \)[/tex].



Answer :

Sure! Let's find the positive value of [tex]\( r \)[/tex] in terms of [tex]\( F_g \)[/tex], [tex]\( G \)[/tex], [tex]\( M_1 \)[/tex], and [tex]\( M_2 \)[/tex]. We start with the formula for gravitational force:

[tex]\[ F_g = \frac{G M_1 M_2}{r^2} \][/tex]

Our goal is to solve this equation for [tex]\( r \)[/tex]. Here are the steps:

1. Isolate [tex]\( r^2 \)[/tex] on one side of the equation:

[tex]\[ F_g = \frac{G M_1 M_2}{r^2} \implies F_g \cdot r^2 = G M_1 M_2 \][/tex]

2. Rearrange the equation to solve for [tex]\( r^2 \)[/tex]:

[tex]\[ r^2 = \frac{G M_1 M_2}{F_g} \][/tex]

3. Solve for [tex]\( r \)[/tex] by taking the square root of both sides:

[tex]\[ r = \sqrt{\frac{G M_1 M_2}{F_g}} \][/tex]

Since we are interested in the positive value of [tex]\( r \)[/tex]:

[tex]\[ r = \sqrt{\frac{G M_1 M_2}{F_g}} \][/tex]

This is the positive value for the distance [tex]\( r \)[/tex] in terms of [tex]\( F_g \)[/tex], [tex]\( G \)[/tex], [tex]\( M_1 \)[/tex], and [tex]\( M_2 \)[/tex].