Answer :
To determine which systems of linear equations have no solution, we examine each provided system:
1. The first system:
[tex]\[ \begin{array}{l} x + y + z = 1100 \\ x - 2y - z = -500 \\ 2x + 3y + 2z = 2600 \end{array} \][/tex]
2. The second system:
[tex]\[ \begin{array}{l} x + y + z = 1400 \\ x - 2y - z = -500 \\ 2x + 2y + 2z = 2700 \end{array} \][/tex]
3. The third system:
[tex]\[ \begin{array}{l} x + y + z = 1900 \\ x - y - 2z = -2000 \\ 2x + 2y + z = 1100 \end{array} \][/tex]
4. The fourth system:
[tex]\[ \begin{array}{l} x + y + z = 1500 \\ x - y - z = -500 \\ 2x + y + z = 2000 \end{array} \][/tex]
5. The fifth system:
[tex]\[ \begin{array}{l} x + y + z = 1400 \\ -0.5x - 0.5y - 0.5z = -900 \\ 2x + 3y + 2z = 3000 \end{array} \][/tex]
6. The sixth system:
[tex]\[ \begin{array}{l} x + y + z = 2400 \\ 2x - 2y + 2z = 700 \\ x + 3y + z = 2400 \end{array} \][/tex]
After solving these systems, we find that only systems 2, 5, and 6 have no solution. Therefore, these are the systems without a solution:
[tex]\[ \begin{array}{l} x + y + z = 1400 \\ x - 2y - z = -500 \\ 2x + 2y + 2z = 2700 \end{array} \][/tex]
[tex]\[ \begin{array}{l} x + y + z = 1400 \\ -0.5x - 0.5y - 0.5z = -900 \\ 2x + 3y + 2z = 3000 \end{array} \][/tex]
[tex]\[ \begin{array}{l} x + y + z = 2400 \\ 2x - 2y + 2z = 700 \\ x + 3y + z = 2400 \end{array} \][/tex]
So, the systems of linear equations that have no solution are the second, fifth, and sixth sets of equations.
1. The first system:
[tex]\[ \begin{array}{l} x + y + z = 1100 \\ x - 2y - z = -500 \\ 2x + 3y + 2z = 2600 \end{array} \][/tex]
2. The second system:
[tex]\[ \begin{array}{l} x + y + z = 1400 \\ x - 2y - z = -500 \\ 2x + 2y + 2z = 2700 \end{array} \][/tex]
3. The third system:
[tex]\[ \begin{array}{l} x + y + z = 1900 \\ x - y - 2z = -2000 \\ 2x + 2y + z = 1100 \end{array} \][/tex]
4. The fourth system:
[tex]\[ \begin{array}{l} x + y + z = 1500 \\ x - y - z = -500 \\ 2x + y + z = 2000 \end{array} \][/tex]
5. The fifth system:
[tex]\[ \begin{array}{l} x + y + z = 1400 \\ -0.5x - 0.5y - 0.5z = -900 \\ 2x + 3y + 2z = 3000 \end{array} \][/tex]
6. The sixth system:
[tex]\[ \begin{array}{l} x + y + z = 2400 \\ 2x - 2y + 2z = 700 \\ x + 3y + z = 2400 \end{array} \][/tex]
After solving these systems, we find that only systems 2, 5, and 6 have no solution. Therefore, these are the systems without a solution:
[tex]\[ \begin{array}{l} x + y + z = 1400 \\ x - 2y - z = -500 \\ 2x + 2y + 2z = 2700 \end{array} \][/tex]
[tex]\[ \begin{array}{l} x + y + z = 1400 \\ -0.5x - 0.5y - 0.5z = -900 \\ 2x + 3y + 2z = 3000 \end{array} \][/tex]
[tex]\[ \begin{array}{l} x + y + z = 2400 \\ 2x - 2y + 2z = 700 \\ x + 3y + z = 2400 \end{array} \][/tex]
So, the systems of linear equations that have no solution are the second, fifth, and sixth sets of equations.