Answer :

Let’s break down and solve the problem step-by-step.

1. Initial Expression:

[tex]\[ [c(19+3) \times 8] \quad \xi+1+[7 \times 10-11] \times 5 \times 2 \][/tex]

2. Evaluate the Expression Inside the First Pair of Square Brackets:

[tex]\[ c(19+3) \times 8 \][/tex]
We assume [tex]\( c = 1 \)[/tex] (since the value of [tex]\( c \)[/tex] is not provided).

Therefore,

[tex]\[ 1 \times (19 + 3) \times 8 = 1 \times 22 \times 8 = 176 \][/tex]

3. Evaluate the Expression Inside the Second Pair of Square Brackets:

[tex]\[ 7 \times 10 - 11 \][/tex]

This simplifies to:

[tex]\[ 70 - 11 = 59 \][/tex]

4. Compute the Entire Second Part of the Expression With the Adjustments:

[tex]\[ [59] \times 5 \times 2 + 1 \][/tex]

Breaking this down:

[tex]\[ 59 \times 5 = 295 \][/tex]

Then,

[tex]\[ 295 \times 2 = 590 \][/tex]

Adding 1 to this result:

[tex]\[ 590 + 1 = 591 \][/tex]

5. Add the Results From the Two Separate Calculations:

- Result from the first expression: [tex]\( 176 \)[/tex]
- Result from the second expression: [tex]\( 591 \)[/tex]

Therefore, the final result is:

[tex]\[ 176 + 591 = 767 \][/tex]

Summary:
- The value inside the first pair of square brackets is [tex]\( 176 \)[/tex].
- The value inside the second pair of square brackets, after all multiplications and additions, is [tex]\( 591 \)[/tex].
- The final result, adding these two parts, is [tex]\( 767 \)[/tex].