Sure, let's find [tex]\( f(7) \)[/tex] and [tex]\( g(-3) \)[/tex] step-by-step.
### Part 1: Finding [tex]\( f(7) \)[/tex]
The function [tex]\( f(x) \)[/tex] is defined as:
[tex]\[ f(x) = -5x - 1 \][/tex]
To find [tex]\( f(7) \)[/tex], substitute [tex]\( x = 7 \)[/tex] into the function:
[tex]\[ f(7) = -5(7) - 1 \][/tex]
[tex]\[ f(7) = -35 - 1 \][/tex]
[tex]\[ f(7) = -36 \][/tex]
So, [tex]\( f(7) = -36 \)[/tex].
### Part 2: Finding [tex]\( g(-3) \)[/tex]
The function [tex]\( g(x) \)[/tex] is defined as:
[tex]\[ g(x) = 3x^3 + 5 \][/tex]
To find [tex]\( g(-3) \)[/tex], substitute [tex]\( x = -3 \)[/tex] into the function:
[tex]\[ g(-3) = 3(-3)^3 + 5 \][/tex]
[tex]\[ g(-3) = 3(-27) + 5 \][/tex]
[tex]\[ g(-3) = -81 + 5 \][/tex]
[tex]\[ g(-3) = -76 \][/tex]
So, [tex]\( g(-3) = -76 \)[/tex].
### Conclusion
The computed values are:
[tex]\[ f(7) = -36 \][/tex]
[tex]\[ g(-3) = -76 \][/tex]
Therefore, the answers are:
[tex]\[ f(7) = -36 \][/tex]
[tex]\[ g(-3) = -76 \][/tex]