Potassium permanganate (a disinfectant) and glycerin (a lubricant) react explosively according to the following equation:

[tex]\[ 14 \text{ KMnO}_4 + 4 \text{ C}_3\text{H}_5(\text{OH})_3 \rightarrow 7 \text{ K}_2\text{CO}_3 + 7 \text{ Mn}_2\text{O}_3 + 5 \text{ CO}_2 + 16 \text{ H}_2\text{O} \][/tex]

How many moles of [tex]\(\text{KMnO}_4\)[/tex] are consumed to form 0.886 moles of carbon dioxide?



Answer :

To determine how many moles of [tex]\(\text{KMnO}_4\)[/tex] are consumed to form 0.886 moles of carbon dioxide ([tex]\(\text{CO}_2\)[/tex]), we can follow these steps:

1. Identify the coefficients from the balanced chemical equation:
[tex]\[ 14 \, \text{KMnO}_4 + 4 \, \text{C}_3\text{H}_5(\text{OH})_3 \rightarrow 7 \, \text{K}_2\text{CO}_3 + 7 \, \text{Mn}_2\text{O}_3 + 5 \, \text{CO}_2 + 16 \, \text{H}_2\text{O} \][/tex]

From the equation, the coefficient of [tex]\(\text{KMnO}_4\)[/tex] is 14 and the coefficient of [tex]\(\text{CO}_2\)[/tex] is 5.

2. Set up the mole ratio:
We use the coefficients from the balanced equation to set up a ratio. For every 14 moles of [tex]\(\text{KMnO}_4\)[/tex], 5 moles of [tex]\(\text{CO}_2\)[/tex] are produced:
[tex]\[ \frac{\text{moles of } \text{KMnO}_4}{\text{moles of } \text{CO}_2} = \frac{14}{5} \][/tex]

3. Calculate the moles of [tex]\(\text{KMnO}_4\)[/tex] consumed:
Given that 0.886 moles of [tex]\(\text{CO}_2\)[/tex] are produced, we can use the ratio to find the moles of [tex]\(\text{KMnO}_4\)[/tex] consumed:
[tex]\[ \text{moles of } \text{KMnO}_4 = \left( \frac{14}{5} \right) \times 0.886 \][/tex]

4. Perform the multiplication:
[tex]\[ \text{moles of } \text{KMnO}_4 = 2.4808 \][/tex]

Thus, 2.4808 moles of [tex]\(\text{KMnO}_4\)[/tex] are consumed to form 0.886 moles of [tex]\(\text{CO}_2\)[/tex].