Select the correct answer.

What is this expression in simplified form?
[tex]\[ 3 \sqrt{7} + 3 \sqrt{63} \][/tex]

A. [tex]\[ 12 \sqrt{7} \][/tex]

B. [tex]\[ 18 \sqrt{7} \][/tex]

C. [tex]\[ 6 \sqrt{7} \][/tex]

D. [tex]\[ 30 \sqrt{7} \][/tex]



Answer :

To simplify the expression [tex]\(3 \sqrt{7} + 3 \sqrt{63}\)[/tex], follow these steps:

1. Simplify [tex]\(\sqrt{63}\)[/tex]:
- Notice that [tex]\(63\)[/tex] can be factored into [tex]\(9 \times 7\)[/tex].
- Therefore, [tex]\(\sqrt{63} = \sqrt{9 \times 7} = \sqrt{9} \times \sqrt{7}\)[/tex].
- Since [tex]\(\sqrt{9} = 3\)[/tex], it follows that [tex]\(\sqrt{63} = 3 \sqrt{7}\)[/tex].

2. Substitute back into the original expression:
- Replace [tex]\(\sqrt{63}\)[/tex] with [tex]\(3 \sqrt{7}\)[/tex].
- The expression becomes [tex]\(3 \sqrt{7} + 3 (3 \sqrt{7})\)[/tex].

3. Combine terms:
- Simplify the expression inside the parentheses first: [tex]\(3 (3 \sqrt{7}) = 9 \sqrt{7}\)[/tex].
- Thus, the expression becomes [tex]\(3 \sqrt{7} + 9 \sqrt{7}\)[/tex].

4. Add like terms:
- Both terms contain [tex]\(\sqrt{7}\)[/tex], so they can be combined like regular algebraic terms.
- Combine [tex]\(3 \sqrt{7}\)[/tex] and [tex]\(9 \sqrt{7}\)[/tex] to get [tex]\((3 + 9) \sqrt{7} = 12 \sqrt{7}\)[/tex].

Hence, the simplified form of the expression [tex]\(3 \sqrt{7} + 3 \sqrt{63}\)[/tex] is [tex]\(12 \sqrt{7}\)[/tex].

The correct answer is:
A. [tex]\(12 \sqrt{7}\)[/tex]