Jean transformed a point by using the rule [tex]\((x, y) \rightarrow (x-6, y+8)\)[/tex]. The image point is [tex]\((-4, 1)\)[/tex]. Which point is the pre-image?

A. [tex]\((-10, 9)\)[/tex]
B. [tex]\((2, -7)\)[/tex]
C. [tex]\((-2, 7)\)[/tex]
D. [tex]\((10, -9)\)[/tex]



Answer :

To find the pre-image of the point given the transformation rule, follow these steps:

1. Understand the transformation rule:
The rule provided is [tex]\((x, y) \rightarrow (x-6, y+8)\)[/tex].

2. Identify the image point:
The image point is [tex]\((-4, 1)\)[/tex].

3. Set up equations to reverse the transformation:
The transformation changes the point [tex]\((x, y)\)[/tex] to [tex]\((x-6, y+8)\)[/tex].
Given [tex]\((-4, 1)\)[/tex] is the image, we need to find the original point [tex]\((x, y)\)[/tex].

This can be expressed as:
[tex]\[(x-6, y+8) = (-4, 1)\][/tex]

4. Solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
We set up two equations based on the components of the transformation:
[tex]\[x - 6 = -4\][/tex]
[tex]\[y + 8 = 1\][/tex]

For the first equation:
[tex]\[x - 6 = -4 \implies x = -4 + 6 \implies x = 2\][/tex]

For the second equation:
[tex]\[y + 8 = 1 \implies y = 1 - 8 \implies y = -7\][/tex]

5. Determine the pre-image coordinates:
The pre-image point found from solving the equations is [tex]\((2, -7)\)[/tex].

6. Check the options provided:
[tex]\[ \begin{align*} &(-10, 9) \\ &(2, -7) \\ &(-2, 7) \\ &(10, -9) \end{align*} \][/tex]

From our solution, the pre-image point [tex]\((2, -7)\)[/tex] is indeed one of the options provided.

Therefore, the pre-image point is [tex]\((2, -7)\)[/tex].