A calculator is sold for Rs 230 at a profit of [tex]15\%[/tex].

1. What is its cost price?
2. At what price must it be sold to make a profit of [tex]10\%[/tex]?



Answer :

Sure, let's solve this step by step.

Step 1: Find the cost price of the calculator.

Given:
- Selling price (SP) is Rs 230.
- Profit percentage is 15%.

We know the formula for selling price based on cost price and profit percentage:
[tex]\[ \text{Selling Price} = \text{Cost Price} \times \left(1 + \frac{\text{Profit Percentage}}{100}\right) \][/tex]

We need to rearrange this formula to solve for the Cost Price (CP):
[tex]\[ \text{Cost Price} = \frac{\text{Selling Price}}{1 + \frac{\text{Profit Percentage}}{100}} \][/tex]

Substitute the given values into the formula:
[tex]\[ \text{Cost Price} = \frac{230}{1 + \frac{15}{100}} \][/tex]
[tex]\[ \text{Cost Price} = \frac{230}{1 + 0.15} \][/tex]
[tex]\[ \text{Cost Price} = \frac{230}{1.15} \][/tex]
[tex]\[ \text{Cost Price} \approx 200.00 \][/tex]

So, the cost price of the calculator is approximately Rs 200.00.

Step 2: Find the new selling price to make a profit of 10%.

Given:
- Cost Price (CP) is Rs 200.00.
- New profit percentage is 10%.

We use the same formula for selling price:
[tex]\[ \text{Selling Price} = \text{Cost Price} \times \left(1 + \frac{\text{New Profit Percentage}}{100}\right) \][/tex]

Substitute the cost price and the new profit percentage into the formula:
[tex]\[ \text{Selling Price} = 200.00 \times \left(1 + \frac{10}{100}\right) \][/tex]
[tex]\[ \text{Selling Price} = 200.00 \times 1.1 \][/tex]
[tex]\[ \text{Selling Price} = 220.00 \][/tex]

So, to make a profit of 10%, the calculator must be sold at Rs 220.00.