Select the correct answer.

Which complex number is equivalent to this expression?
[tex]\[ 7 + (9 + 27i) - 2(25 - 11i) \][/tex]

A. [tex]\(66 + 5i\)[/tex]

B. [tex]\(66 - 49i\)[/tex]

C. [tex]\(-34 + 5i\)[/tex]

D. [tex]\(-34 + 49i\)[/tex]



Answer :

Let's solve the given expression step-by-step to find out which complex number is equivalent to it:

Given expression:
[tex]\[ 7 + (9 + 27i) - 2(25 - 11i) \][/tex]

### Step 1: Distribute the [tex]\(-2\)[/tex] across the terms inside the parentheses
[tex]\[ -2(25 - 11i) = -2 \cdot 25 + -2 \cdot -11i = -50 + 22i \][/tex]

### Step 2: Substitute this result back into the original expression
[tex]\[ 7 + (9 + 27i) - 50 + 22i \][/tex]

### Step 3: Combine the real parts and the imaginary parts separately
- Real parts: [tex]\(7 + 9 - 50\)[/tex]
[tex]\[ 7 + 9 = 16 \][/tex]
[tex]\[ 16 - 50 = -34 \][/tex]

- Imaginary parts: [tex]\(27i + 22i\)[/tex]
[tex]\[ 27i + 22i = 49i \][/tex]

### Final result in complex form
[tex]\[ -34 + 49i \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{-34 + 49i} \][/tex]

So, the correct answer is D. [tex]\(-34 + 49i\)[/tex].