Answer :

Let's simplify the given expression step by step:

Given expression: [tex]\(3u - 10(10u - 10)\)[/tex]

Step 1: Distribute the [tex]\(-10\)[/tex] inside the parentheses:
[tex]\[ 3u - 10 \cdot 10u + 10 \cdot 10 \][/tex]

Step 2: Perform the multiplications within the expression:
[tex]\[ 3u - 100u + 100 \][/tex]

Step 3: Combine like terms, which are the terms involving [tex]\(u\)[/tex]:
[tex]\[ (3u - 100u) + 100 \][/tex]

Step 4: Simplify the coefficients of [tex]\(u\)[/tex]:
[tex]\[ -97u + 100 \][/tex]

Therefore, the expression [tex]\(3u - 10(10u - 10)\)[/tex] simplifies to:
[tex]\[ 100 - 97u \][/tex]

So, the simplest form of the given expression is:
[tex]\[ 100 - 97u \][/tex]