Let's simplify the given expression step by step:
Given expression: [tex]\(3u - 10(10u - 10)\)[/tex]
Step 1: Distribute the [tex]\(-10\)[/tex] inside the parentheses:
[tex]\[
3u - 10 \cdot 10u + 10 \cdot 10
\][/tex]
Step 2: Perform the multiplications within the expression:
[tex]\[
3u - 100u + 100
\][/tex]
Step 3: Combine like terms, which are the terms involving [tex]\(u\)[/tex]:
[tex]\[
(3u - 100u) + 100
\][/tex]
Step 4: Simplify the coefficients of [tex]\(u\)[/tex]:
[tex]\[
-97u + 100
\][/tex]
Therefore, the expression [tex]\(3u - 10(10u - 10)\)[/tex] simplifies to:
[tex]\[
100 - 97u
\][/tex]
So, the simplest form of the given expression is:
[tex]\[
100 - 97u
\][/tex]