Which of the following is the equation of a line in slope-intercept form for a line with slope [tex]\frac{2}{3}[/tex] and [tex]y[/tex]-intercept at [tex](0,-2)[/tex]?

A. [tex]y=-\frac{3}{2} x-2[/tex]
B. [tex]y=-\frac{2}{3} x+\frac{2}{3}[/tex]
C. [tex]y=-2 x-\frac{2}{3}[/tex]
D. [tex]y=\frac{2}{3} x-2[/tex]



Answer :

Let’s determine the equation of a line in the slope-intercept form given a slope and y-intercept.

1. Understanding Slope-Intercept Form:
The slope-intercept form of a line is given by:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.

2. Given Values:
- Slope ([tex]\( m \)[/tex]) = [tex]\(\frac{2}{3}\)[/tex]
- Y-intercept ([tex]\( b \)[/tex]) = -2

3. Substituting the Given Values:
By substituting the given values into the slope-intercept form:
[tex]\[ y = \frac{2}{3}x - 2 \][/tex]

Hence, the equation of the line with the given slope and y-intercept is:
[tex]\[ y = \frac{2}{3} x - 2 \][/tex]

4. Comparing with Given Options:
Now, let's match this equation with the given options:
- Option A: [tex]\( y = -\frac{3}{2} x - 2 \)[/tex]
- Option B: [tex]\( y = -\frac{2}{3} x + \frac{2}{3} \)[/tex]
- Option C: [tex]\( y = -2 x - \frac{2}{3} \)[/tex]
- Option D: [tex]\( y = \frac{2}{3} x - 2 \)[/tex]

Clearly, the equation we derived ([tex]\( y = \frac{2}{3} x - 2 \)[/tex]) matches Option D.

Therefore, the correct option is:
[tex]\[ \boxed{D} \][/tex]