Which polynomial correctly combines the like terms and expresses the given polynomial in standard form?

Given polynomial:
[tex]\[ 9xy^3 - 4y^4 - 10x^2y^2 + x^3y + 3x^4 + 2x^2y^2 - 9y^4 \][/tex]

A. [tex]\(-13y^4 + 3x^4 - 8x^2y^2 + x^3y + 9xy^3\)[/tex]

B. [tex]\(-13y^4 + x^3y - 8x^2y^2 + 9xy^3 + 3x^4\)[/tex]

C. [tex]\(3x^4 - 8x^2y^2 + x^3y + 9xy^3 - 13y^4\)[/tex]

D. [tex]\(3x^4 + x^3y - 8x^2y^2 + 9xy^3 - 13y^4\)[/tex]



Answer :

To determine which polynomial correctly combines the like terms and expresses the given polynomial in standard form, we can follow these steps:

1. Identify and group like terms: The given polynomial is:
[tex]\[ 9 x y^3 - 4 y^4 - 10 x^2 y^2 + x^3 y + 3 x^4 + 2 x^2 y^2 - 9 y^4 \][/tex]

2. Combine the coefficients of the like terms:
- For [tex]\(x^4\)[/tex]: There is only one term [tex]\(3 x^4\)[/tex].
- For [tex]\(x^3 y\)[/tex]: There is only one term [tex]\(x^3 y\)[/tex].
- For [tex]\(x^2 y^2\)[/tex]: Combine [tex]\(-10 x^2 y^2\)[/tex] and [tex]\(2 x^2 y^2\)[/tex]:
[tex]\[ -10 + 2 = -8 \quad \text{thus,} \quad -8 x^2 y^2 \][/tex]
- For [tex]\(x y^3\)[/tex]: There is only one term [tex]\(9 x y^3\)[/tex].
- For [tex]\(y^4\)[/tex]: Combine [tex]\(-4 y^4\)[/tex] and [tex]\(-9 y^4\)[/tex]:
[tex]\[ -4 - 9 = -13 \quad \text{thus,} \quad -13 y^4 \][/tex]

3. Arrange the polynomial in standard form: The standard form arranges terms in order of decreasing powers:

So the simplified and combined polynomial is:
[tex]\[ 3 x^4 + x^3 y - 8 x^2 y^2 + 9 x y^3 - 13 y^4 \][/tex]

Hence, the polynomial that correctly combines the like terms and expresses the given polynomial in standard form is:
[tex]$ 3 x^4 + x^3 y - 8 x^2 y^2 + 9 x y^3 - 13 y^4 $[/tex]

Comparing this with the given options, the correct choice is:
[tex]$ 3 x^4 + x^3 y - 8 x^2 y^2 + 9 x y^3 - 13 y^4 $[/tex]