Answer :
To find the experimental probability of rolling an odd number with the given frequencies, we follow these steps:
1. Identify the frequencies of each roll:
[tex]\[ \begin{array}{|l|l|l|l|l|l|l|} \hline \text{Roll} & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \text{Frequency} & 15 & 18 & 20 & 17 & 24 & 26 \\ \hline \end{array} \][/tex]
2. Calculate the total number of rolls:
[tex]\[ \text{Total Number of Rolls} = 15 + 18 + 20 + 17 + 24 + 26 = 120 \][/tex]
3. Calculate the total number of rolls that resulted in an odd number:
The odd numbers on a die are 1, 3, and 5. Hence, we sum up the frequencies for these rolls:
[tex]\[ \text{Total Odd Rolls} = 15 (\text{for } 1) + 20 (\text{for } 3) + 24 (\text{for } 5) = 59 \][/tex]
4. Calculate the experimental probability of rolling an odd number:
To find the probability, we divide the number of odd rolls by the total number of rolls:
[tex]\[ \text{Probability of Odd Roll} = \frac{\text{Total Odd Rolls}}{\text{Total Rolls}} = \frac{59}{120} \][/tex]
5. Convert the fraction to a decimal:
[tex]\[ \frac{59}{120} \approx 0.492 \][/tex]
Hence, the experimental probability of rolling an odd number is [tex]\( 0.492 \)[/tex] (rounded to three decimal places).
1. Identify the frequencies of each roll:
[tex]\[ \begin{array}{|l|l|l|l|l|l|l|} \hline \text{Roll} & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \text{Frequency} & 15 & 18 & 20 & 17 & 24 & 26 \\ \hline \end{array} \][/tex]
2. Calculate the total number of rolls:
[tex]\[ \text{Total Number of Rolls} = 15 + 18 + 20 + 17 + 24 + 26 = 120 \][/tex]
3. Calculate the total number of rolls that resulted in an odd number:
The odd numbers on a die are 1, 3, and 5. Hence, we sum up the frequencies for these rolls:
[tex]\[ \text{Total Odd Rolls} = 15 (\text{for } 1) + 20 (\text{for } 3) + 24 (\text{for } 5) = 59 \][/tex]
4. Calculate the experimental probability of rolling an odd number:
To find the probability, we divide the number of odd rolls by the total number of rolls:
[tex]\[ \text{Probability of Odd Roll} = \frac{\text{Total Odd Rolls}}{\text{Total Rolls}} = \frac{59}{120} \][/tex]
5. Convert the fraction to a decimal:
[tex]\[ \frac{59}{120} \approx 0.492 \][/tex]
Hence, the experimental probability of rolling an odd number is [tex]\( 0.492 \)[/tex] (rounded to three decimal places).