Select the best answer for the question.

Will bought 3 college textbooks. One cost [tex]$\$[/tex]32[tex]$, one cost $[/tex]\[tex]$45$[/tex], and one cost [tex]$\$[/tex]39[tex]$. What is the average price of his books? Choose the statement that correctly calculates the average.

A. $[/tex]\[tex]$32 + 3 + \$[/tex]45 + 3 + \[tex]$39$[/tex]

B. [tex]$\$[/tex]32 + \[tex]$45 + \$[/tex]39 + 3[tex]$

C. $[/tex]3 \times \[tex]$32 + \$[/tex]45 + \[tex]$39$[/tex]

D. [tex]$(\$[/tex]32 + \[tex]$45 + \$[/tex]39) \div 3$



Answer :

To find the average price of the three textbooks Will bought, we need to follow these steps:

1. Add the prices of all the textbooks together:
- The cost of the first textbook is \[tex]$32. - The cost of the second textbook is \$[/tex]45.
- The cost of the third textbook is \[tex]$39. When we add these together, we get: \[ \$[/tex]32 + \[tex]$45 + \$[/tex]39 = \[tex]$116 \] 2. Calculate the average price by dividing the total cost by the number of textbooks: - There are 3 textbooks. So, we divide the total cost by the number of textbooks: \[ \frac{\$[/tex]116}{3} \approx \[tex]$38.67 \] Based on these calculations, the correct statement to calculate the average price of the books is: D. \[ (\$[/tex]32 + \[tex]$45 + \$[/tex]39) \div 3 \]

Therefore, the best answer is: D.