Select the best answer for the question.

Using the Pythagorean theorem, find the length of a leg of a right triangle if the other leg is 8 feet long and the hypotenuse is 10 feet long.

A. [tex]\sqrt{41} \, \text{ft}[/tex]
B. [tex]6 \, \text{ft}[/tex]
C. [tex]12.81 \, \text{ft}[/tex]
D. [tex]36 \, \text{ft}[/tex]



Answer :

To solve for the length of the unknown leg in a right triangle using the Pythagorean theorem, follow these steps:

1. Identify the given values:
- One leg, [tex]\( b \)[/tex], is 8 feet long.
- The hypotenuse, [tex]\( c \)[/tex], is 10 feet long.
- We need to find the length of the other leg, [tex]\( a \)[/tex].

2. Recall the Pythagorean theorem:
- The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse ([tex]\( c \)[/tex]) is equal to the sum of the squares of the lengths of the other two legs ([tex]\( a \)[/tex] and [tex]\( b \)[/tex]):
[tex]\[ a^2 + b^2 = c^2 \][/tex]

3. Rearrange the Pythagorean theorem to solve for the unknown leg [tex]\( a \)[/tex]:
- [tex]\( a^2 = c^2 - b^2 \)[/tex]

4. Substitute the known values into the equation:
- [tex]\( c = 10 \)[/tex] feet
- [tex]\( b = 8 \)[/tex] feet
[tex]\[ a^2 = 10^2 - 8^2 \][/tex]

5. Calculate the squares of the known values:
- [tex]\( 10^2 = 100 \)[/tex]
- [tex]\( 8^2 = 64 \)[/tex]
[tex]\[ a^2 = 100 - 64 \][/tex]

6. Subtract the values:
[tex]\[ a^2 = 36 \][/tex]

7. Take the square root of both sides to solve for [tex]\( a \)[/tex]:
[tex]\[ a = \sqrt{36} = 6 \][/tex]

Thus, the length of the unknown leg is 6 feet.

The best answer is:
B. [tex]$6 ft$[/tex].