Which values are solutions to the inequality below? Check all that apply.

[tex]\[ x^2 \ \textgreater \ 100 \][/tex]

A. 12
B. -11
C. 9
D. -9



Answer :

Let's solve the inequality [tex]\( x^2 > 100 \)[/tex] step-by-step to determine which values satisfy it. We are given four values to check: 12, -11, 9, and -9.

1. Given inequality:
[tex]\[ x^2 > 100 \][/tex]

2. Test each value individually:

- Value [tex]\( A: x = 12 \)[/tex]
[tex]\[ 12^2 = 144 \][/tex]
[tex]\[ 144 > 100 \quad \text{(True)} \][/tex]
Therefore, 12 satisfies the inequality [tex]\( x^2 > 100 \)[/tex].

- Value [tex]\( B: x = -11 \)[/tex]
[tex]\[ (-11)^2 = 121 \][/tex]
[tex]\[ 121 > 100 \quad \text{(True)} \][/tex]
Therefore, -11 satisfies the inequality [tex]\( x^2 > 100 \)[/tex].

- Value [tex]\( C: x = 9 \)[/tex]
[tex]\[ 9^2 = 81 \][/tex]
[tex]\[ 81 > 100 \quad \text{(False)} \][/tex]
Therefore, 9 does not satisfy the inequality [tex]\( x^2 > 100 \)[/tex].

- Value [tex]\( D: x = -9 \)[/tex]
[tex]\[ (-9)^2 = 81 \][/tex]
[tex]\[ 81 > 100 \quad \text{(False)} \][/tex]
Therefore, -9 does not satisfy the inequality [tex]\( x^2 > 100 \)[/tex].

3. Summary:
The values that satisfy the inequality [tex]\( x^2 > 100 \)[/tex] are:
[tex]\[ \text{A. 12 and B. -11} \][/tex]

4. Final Answer:
- A. 12
- B. -11