Simplify [tex]\sqrt{-50}[/tex].

A. [tex]5 \sqrt{2}[/tex]
B. [tex]5 i \sqrt{2}[/tex]
C. [tex]-5 \sqrt{2}[/tex]
D. [tex]-5 i \sqrt{2}[/tex]



Answer :

To simplify the expression [tex]\(\sqrt{-50}\)[/tex], follow these steps:

1. Recognize the format: Understand that we are dealing with the square root of a negative number, which will involve imaginary units.

2. Decompose the expression: Rewrite the square root of [tex]\(-50\)[/tex] using the property of square roots for negative numbers:
[tex]\[ \sqrt{-50} = \sqrt{-1 \times 50} \][/tex]

3. Introduce the imaginary unit: Recall that [tex]\(\sqrt{-1} = i\)[/tex]. Using this, we can separate the imaginary part from the positive part:
[tex]\[ \sqrt{-50} = \sqrt{-1} \times \sqrt{50} = i \times \sqrt{50} \][/tex]

4. Simplify the square root: Break down [tex]\(\sqrt{50}\)[/tex] further. Notice that [tex]\(50\)[/tex] can be factored into [tex]\(25 \times 2\)[/tex]:
[tex]\[ \sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} \][/tex]

5. Evaluate the components: Since [tex]\(\sqrt{25} = 5\)[/tex], substitute this value back into the expression:
[tex]\[ \sqrt{50} = 5 \times \sqrt{2} \][/tex]

6. Combine the results: Now that we have [tex]\(\sqrt{50}\)[/tex] simplified, substitute it back into the original equation:
[tex]\[ \sqrt{-50} = i \times 5 \times \sqrt{2} = 5i \sqrt{2} \][/tex]

So, the simplified form of [tex]\(\sqrt{-50}\)[/tex] is [tex]\(5i \sqrt{2}\)[/tex].

Therefore, the correct answer is:
[tex]\[ 5 i \sqrt{2} \][/tex]