Answered

Select the correct answer from each drop-down menu.

Tests show that the hydrogen ion concentration of a sample of apple juice is 0.0003 and that of ammonia is [tex][tex]$1.3 \times 10^{-9}$[/tex][/tex]. Find the approximate [tex][tex]$pH$[/tex][/tex] of each liquid using the formula [tex][tex]$pH = -\log \left[ H^{+} \right]$[/tex][/tex], where [tex] \left[ H^{+} \right] [/tex] is the hydrogen ion concentration.

The [tex][tex]$pH$[/tex][/tex] value of the apple juice is [tex]\square[/tex].

The [tex][tex]$pH$[/tex][/tex] value of ammonia is [tex]\square[/tex].



Answer :

To find the pH values of the given substances, we use the pH formula:

[tex]\[ \text{pH} = -\log \left[ H^+ \right] \][/tex]

where [tex]\( \left[ H^+ \right] \)[/tex] is the hydrogen ion concentration.

1. For apple juice:
- The hydrogen ion concentration of apple juice is [tex]\( 0.0003 \)[/tex].
- Applying the formula [tex]\( \text{pH} = -\log \left[ H^+ \right] \)[/tex]:
[tex]\[ \text{pH} = -\log(0.0003) \][/tex]

After calculating, we find the pH value:
[tex]\[ \text{pH} \approx 3.52 \][/tex]

2. For ammonia:
- The hydrogen ion concentration of ammonia is [tex]\( 1.3 \times 10^{-9} \)[/tex].
- Applying the formula [tex]\( \text{pH} = -\log \left[ H^+ \right] \)[/tex]:
[tex]\[ \text{pH} = -\log(1.3 \times 10^{-9}) \][/tex]

After calculating, we find the pH value:
[tex]\[ \text{pH} \approx 8.89 \][/tex]

Therefore, the correct answers are:
- The pH value of the apple juice is 3.52
- The pH value of ammonia is 8.89