Select the correct answer.

Which expression is equivalent to the given expression?

[tex]\[ 4 \ln x + \ln 3 - \ln x \][/tex]

A. [tex]\(\ln \left(x^4 - x + 3\right)\)[/tex]

B. [tex]\(\ln (3x + 3)\)[/tex]

C. [tex]\(\ln (11x)\)[/tex]

D. [tex]\(\ln \left(3x^3\right)\)[/tex]



Answer :

To find the equivalent expression to the given expression [tex]\(4 \ln x + \ln 3 - \ln x\)[/tex], we need to simplify the logarithmic terms step by step.

1. Combine like terms:
We start by focusing on the terms that involve [tex]\(\ln x\)[/tex]. Specifically, we have [tex]\(4 \ln x\)[/tex] and [tex]\(- \ln x\)[/tex].

[tex]\[ 4 \ln x - \ln x = (4 - 1) \ln x = 3 \ln x \][/tex]

2. Re-write the expression:
After combining the logarithmic terms, the expression simplifies to:

[tex]\[ 3 \ln x + \ln 3 \][/tex]

3. Combine logarithms:
Now, we use the logarithm property that states: [tex]\(\ln a + \ln b = \ln(ab)\)[/tex]. Applying this rule, we combine [tex]\(3 \ln x\)[/tex] and [tex]\(\ln 3\)[/tex] into a single logarithm:

[tex]\[ 3 \ln x + \ln 3 = \ln (x^3) + \ln 3 = \ln (3 \cdot x^3) = \ln (3x^3) \][/tex]

Therefore, the expression [tex]\(4 \ln x + \ln 3 - \ln x\)[/tex] is equivalent to [tex]\(\ln \left(3 x^3\right)\)[/tex].

Hence, the correct answer is:

[tex]\[ \boxed{\ln \left(3 x^3\right)} \][/tex]

So the correct choice is:

[tex]\[ \boxed{\text{D}} \][/tex]