Answer :
To solve the expression [tex]\(\sqrt[3]{4 \times 3} \times \sqrt[3]{9 \times 2}\)[/tex], we'll break it down step by step:
1. Calculate the intermediate values inside the cube roots:
[tex]\[ 4 \times 3 = 12 \][/tex]
[tex]\[ 9 \times 2 = 18 \][/tex]
2. Take the cube roots of these intermediate values:
[tex]\[ \sqrt[3]{12} \approx 2.2894284851066637 \][/tex]
[tex]\[ \sqrt[3]{18} \approx 2.6207413942088964 \][/tex]
3. Multiply the cube roots together:
[tex]\[ 2.2894284851066637 \times 2.6207413942088964 = 6.0 \][/tex]
So, the evaluated expression is:
[tex]\[ \boxed{6} \][/tex]
1. Calculate the intermediate values inside the cube roots:
[tex]\[ 4 \times 3 = 12 \][/tex]
[tex]\[ 9 \times 2 = 18 \][/tex]
2. Take the cube roots of these intermediate values:
[tex]\[ \sqrt[3]{12} \approx 2.2894284851066637 \][/tex]
[tex]\[ \sqrt[3]{18} \approx 2.6207413942088964 \][/tex]
3. Multiply the cube roots together:
[tex]\[ 2.2894284851066637 \times 2.6207413942088964 = 6.0 \][/tex]
So, the evaluated expression is:
[tex]\[ \boxed{6} \][/tex]