Answer :
To determine the slowest and rate-determining step in the given reaction mechanism, we consider the following points:
1. The overall reaction combines [tex]\( \text{NO}_2 \)[/tex] and [tex]\( \text{CO} \)[/tex] to produce [tex]\( \text{NO} \)[/tex] and [tex]\( \text{CO}_2 \)[/tex].
2. The reaction mechanism proposed consists of two steps:
[tex]\[ \begin{array}{l} \text { Step 1: } \text{NO}_2 + \text{NO}_2 \rightarrow \text{NO}_3 + \text{NO} \\ \text { Step 2: } \text{NO}_3 + \text{CO} \rightarrow \text{NO}_2 + \text{CO}_2 \end{array} \][/tex]
3. Experimental findings have shown that increasing the concentration of [tex]\( \text{CO} \)[/tex] has no effect on the rate of reaction, while increasing the concentration of [tex]\( \text{NO}_2 \)[/tex] increases the rate of the reaction.
Given these points, we can deduce the following:
- Since increasing the concentration of [tex]\( \text{CO} \)[/tex] does not affect the rate of the reaction, step 2 involving [tex]\( \text{CO} \)[/tex] is not the rate-determining step. This implies that step 2 is relatively fast.
- Conversely, since increasing the concentration of [tex]\( \text{NO}_2 \)[/tex] increases the reaction rate, it suggests that [tex]\( \text{NO}_2 \)[/tex] directly influences the rate-determining step. This information points towards step 1 as the slower step which involves [tex]\( \text{NO}_2 \)[/tex].
Therefore, we can conclude that the slowest step is step 1, and it is called the rate-determining step.
In summary:
The slowest step is 1, and it is called the rate-determining step.
1. The overall reaction combines [tex]\( \text{NO}_2 \)[/tex] and [tex]\( \text{CO} \)[/tex] to produce [tex]\( \text{NO} \)[/tex] and [tex]\( \text{CO}_2 \)[/tex].
2. The reaction mechanism proposed consists of two steps:
[tex]\[ \begin{array}{l} \text { Step 1: } \text{NO}_2 + \text{NO}_2 \rightarrow \text{NO}_3 + \text{NO} \\ \text { Step 2: } \text{NO}_3 + \text{CO} \rightarrow \text{NO}_2 + \text{CO}_2 \end{array} \][/tex]
3. Experimental findings have shown that increasing the concentration of [tex]\( \text{CO} \)[/tex] has no effect on the rate of reaction, while increasing the concentration of [tex]\( \text{NO}_2 \)[/tex] increases the rate of the reaction.
Given these points, we can deduce the following:
- Since increasing the concentration of [tex]\( \text{CO} \)[/tex] does not affect the rate of the reaction, step 2 involving [tex]\( \text{CO} \)[/tex] is not the rate-determining step. This implies that step 2 is relatively fast.
- Conversely, since increasing the concentration of [tex]\( \text{NO}_2 \)[/tex] increases the reaction rate, it suggests that [tex]\( \text{NO}_2 \)[/tex] directly influences the rate-determining step. This information points towards step 1 as the slower step which involves [tex]\( \text{NO}_2 \)[/tex].
Therefore, we can conclude that the slowest step is step 1, and it is called the rate-determining step.
In summary:
The slowest step is 1, and it is called the rate-determining step.