Select the tables that show a proportional relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex].

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
1 & 2 \\
\hline
3 & 6 \\
\hline
7 & 14 \\
\hline
\end{tabular}
\][/tex]



Answer :

To determine whether the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in the given table is proportional, we need to check if the ratio [tex]\( \frac{y}{x} \)[/tex] is constant for all data points.

Let's calculate the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values provided in the table:

1. For the first pair [tex]\((x = 1, y = 2)\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{2}{1} = 2.0 \][/tex]

2. For the second pair [tex]\((x = 3, y = 6)\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{6}{3} = 2.0 \][/tex]

3. For the third pair [tex]\((x = 7, y = 14)\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{14}{7} = 2.0 \][/tex]

Since the ratio [tex]\( \frac{y}{x} \)[/tex] is the same (2.0) for all the data points [tex]\((1, 2)\)[/tex], [tex]\((3, 6)\)[/tex], and [tex]\((7, 14)\)[/tex], we can conclude that the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is proportional.

Thus, the given table shows a proportional relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex].