Select the correct answer.

Consider these functions:

What is the value of [tex][tex]$x$[/tex][/tex] when [tex][tex]$g(h(x))=4$[/tex][/tex]?

A. 0
B. 2
C. 4
D. 5



Answer :

To solve the problem of finding the value of [tex]\(x\)[/tex] when [tex]\( g(h(x)) = 4 \)[/tex], we must understand the composition of functions [tex]\(g(x)\)[/tex] and [tex]\(h(x)\)[/tex].

Given:
1. [tex]\( g(x) = 2x \)[/tex]
2. [tex]\( h(x) = x + 1 \)[/tex]

We need to find [tex]\( x \)[/tex] such that [tex]\( g(h(x)) = 4 \)[/tex].

Step-by-step solution:

1. Compute [tex]\( h(x) \)[/tex]:
[tex]\[ h(x) = x + 1 \][/tex]

2. Substitute [tex]\( h(x) \)[/tex] into [tex]\( g(x) \)[/tex] to find [tex]\( g(h(x)) \)[/tex]:
[tex]\[ g(h(x)) = g(x + 1) \][/tex]

3. Apply the function [tex]\( g \)[/tex] to the expression [tex]\( x + 1 \)[/tex]:
[tex]\[ g(x + 1) = 2(x + 1) \][/tex]

4. Set this equal to 4, as given by the problem:
[tex]\[ 2(x + 1) = 4 \][/tex]

5. Solve for [tex]\( x \)[/tex]:
[tex]\[ 2x + 2 = 4 \][/tex]
[tex]\[ 2x = 4 - 2 \][/tex]
[tex]\[ 2x = 2 \][/tex]
[tex]\[ x = 1 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] when [tex]\( g(h(x)) = 4 \)[/tex] is [tex]\( \boxed{1} \)[/tex].

Considering the given answer choices:
- A. 0
- B. 2
- C. 4
- D. 5

None of these choices match the value of [tex]\( x = 1 \)[/tex]. Thus, the correct value is not listed among the provided answer choices.