Type the correct answer in each box.

A race car is driven by a professional driver at [tex]99 \frac{\text{miles}}{\text{hour}}[/tex]. What is this speed in [tex]\frac{\text{kilometers}}{\text{hour}}[/tex] and [tex]\frac{\text{kilometers}}{\text{minute}}[/tex]?

1 mile = 1.61 kilometers
1 hour = 60 minutes

Express the answers to the correct number of significant figures.

The speed is equivalent to [tex]\square[/tex] [tex]\frac{\text{kilometers}}{\text{hour}}[/tex], or [tex]\square[/tex] [tex]\frac{\text{kilometers}}{\text{minute}}[/tex].



Answer :

First, let's convert the speed from miles per hour to kilometers per hour.

Given:
- Speed in miles per hour: [tex]\( 99 \, \frac{\text{miles}}{\text{hour}} \)[/tex]
- Conversion factor: [tex]\( 1 \, \text{mile} = 1.61 \, \text{kilometers} \)[/tex]

To find the speed in kilometers per hour:
[tex]\[ 99 \, \frac{\text{miles}}{\text{hour}} \times 1.61 \, \frac{\text{kilometers}}{\text{mile}} = 159.39 \, \frac{\text{kilometers}}{\text{hour}} \][/tex]

Next, let's convert the speed from kilometers per hour to kilometers per minute.

Given:
- Speed in kilometers per hour: [tex]\( 159.39 \, \frac{\text{kilometers}}{\text{hour}} \)[/tex]
- Conversion factor: [tex]\( 1 \, \text{hour} = 60 \, \text{minutes} \)[/tex]

To find the speed in kilometers per minute:
[tex]\[ 159.39 \, \frac{\text{kilometers}}{\text{hour}} \div 60 \, \frac{\text{minutes}}{\text{hour}} = 2.6565 \, \frac{\text{kilometers}}{\text{minute}} \][/tex]

Therefore, the speed of the race car is equivalent to [tex]\( 159.39 \, \frac{\text{kilometers}}{\text{hour}} \)[/tex] or [tex]\( 2.6565 \, \frac{\text{kilometers}}{\text{minute}} \)[/tex].

So the correct answers are:
[tex]\[ 159.39 \, \frac{\text{kilometers}}{\text{hour}} \][/tex]
[tex]\[ 2.6565 \, \frac{\text{kilometers}}{\text{minute}} \][/tex]